›› 2010, Vol. 31 ›› Issue (11): 3397-3403.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Characteristics of loess seismic subsidence with depth under cyclic loading

XU Shun-hua 1, 2,WANG Lan-min2,SUN Jun-jie 1, 2,WU Zhi-jian2   

  1. 1. School of Civil Engineering and Mechanics,Lanzhou University, Lanzhou 730000, China; 2. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Received:2010-04-09 Online:2010-11-10 Published:2010-11-24

Abstract:

Loess seismic subsidence is a type of disaster when the earthquake occurred in a loess area. The characteristics of loess seismic subsidence with depth is studied by indoor dynamic triaxial test of 5 groups of original Malan loess Q3 samples in different depths. The results show that: (1) In terms of natural water contend, humidification or dehumidification, the depth of the loess seismic subsidence, with the increase dynamic stress, has a process of from smooth to rapid lowering, and then converging to the maximum depth of seismic subsidence. (2) Dynamic stress intervals are different corresponding to stages, interval in rapid lowering stage becoming narrow; the minimum dynamic stress shrinking with increase of water content; and the minimum dynamic stress can lower by 30% in term of 20% comparing to 5%. (3) The maximum depth of loess seismic subsidence is found and it is not affected by the dynamic stress and water content. Only the water content is able to reduce minimum dynamic stress when reaching maximum depth of the seismic subsidence and speeds up the development process. At last, the loess seismic subsidence curves of the depth converging to the maximum of depth of seismic subsidence with increasing of the dynamic stress; and in this experiment the maximum depth is 15.5 m.

Key words: depth characteristics of loess seismic subsidence, maximum depth, water content, dynamic stress, humidification, dehumidification

CLC Number: 

  • TU 444
[1] ZHENG Yao-lin, ZHANG Rong-jun, ZHENG Jun-jie, DONG Chao-qiang, LU Zhan, . Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content [J]. Rock and Soil Mechanics, 2019, 40(8): 3107-3114.
[2] LIU Zhong-xian, WANG Zhi-kun, LIANG Jian-wen, WANG Chu-chu, . Method of fundamental solution based on complete spherical wave potential solutions to 3-D elastic wave scattering and dynamic stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2730-2738.
[3] YAN Ya-jing, YAN Yong-shuai, ZHAO Gui-zhang, ZHANG Tai-li, SUN Qiang, . Study on moisture migration in natural slope using high-density electrical resistivity tomography method [J]. Rock and Soil Mechanics, 2019, 40(7): 2807-2814.
[4] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[5] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[6] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[7] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[8] MEI Hui-hao, LENG Wu-ming, NIE Ru-song, LIU Wen-jie, WU Xiao-wei, . Random distribution characteristics of peak dynamic stress on subgrade surface of heavy haul railway [J]. Rock and Soil Mechanics, 2019, 40(4): 1603-1613.
[9] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[10] WANG Bing-long, MEI Zhen, XIAO Jun-hua. Experimental study of subgrade reinforcement and diseases treatment by geocell [J]. , 2018, 39(S1): 325-332.
[11] HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, YANG Lin-qing,. Solution and analysis of dynamic stress response for transversely isotropic multilayered soil [J]. , 2018, 39(6): 2287-2294.
[12] LI Qing, YU Qiang, XU Wen-long, WAN Ming-hua, ZHANG Zheng, Lü Chen, WANG Han-jun,. Experimental research on determination of dynamic stress intensity factor of type-Ⅰ crack using strain gage method [J]. , 2018, 39(4): 1211-1218.
[13] TAO Gao-liang, LI Jin, ZHUANG Xin-shan, XIAO Heng-lin, CUI Xi-lin, XU Wei-sheng. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics [J]. , 2018, 39(4): 1256-1262.
[14] WU Meng-tao, LIU Fang-cheng, CHEN Ju-long, CHEN Lu. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains [J]. , 2018, 39(3): 803-814.
[15] CAO Ya-peng, WEN Tao, MI Hai-zhen, ZHOU Feng-xi, YANG Peng,. Salt expansion properties of sulfate saline soils under one time decrease of water content [J]. , 2018, 39(3): 881-888.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Yun-hua, LIU Xin-rong, SHU Zhi-le. [J]. , 2009, 30(10): 3215 -3216 .
[2] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[3] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[4] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[5] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[6] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[7] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[8] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[9] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[10] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .