›› 2010, Vol. 31 ›› Issue (11): 3441-3446.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of aging failure mechanics and triaxial compression creep experiments with water pressure coupled stress of brittle rock

HUANG Shu-ling 1, 2,FENG Xia-ting1,ZHOU Hui1,ZHANG Chuan-qing1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan 430010, China
  • Received:2009-09-18 Online:2010-11-10 Published:2010-11-24

Abstract:

Based on triaxial compression rheological experiments with water pressure coupled stress about the Jinping marble from the deep site in Jinping II diversion tunnel, the aging deformation characteristics,isochronous curve and aging failure mechanics are discussed in detail. The test results show that: (1) Water pressure can enhance the aging deformation capacity of the marble, and the steady-state creep rate under water pressure is greater than that when there is not water pressure. (2) Stress strength ratio of crack dilate instability can be used as creep instability threshold of brittle rock, and when stress strength ratio reached this threshold, the probability of rock instability increased sharply with time to develop. (3) Volume creep value is greater than the lateral or axial creep value, which indicates that there is a distinguishing dilate creep feature of brittle rock. (4) Isochronous curves of brittle rock at different time have obvious similarities, and accelerating creep ago, the curves are linear, but in the event of acceleration creep, the curves are significantly non-linear characteristics.

Key words: water pressure coupled stress, brittle rock, triaxial creep, aging deformation and failure mechanics

CLC Number: 

  • TU 452
[1] WANG Li-ye, ZHOU Feng-xi, QIN Hu, . Fractional creep model and experimental study of saturated saline soil [J]. Rock and Soil Mechanics, 2020, 41(2): 543-551.
[2] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[3] ZHOU Hui, CHEN Jun, ZHANG Chuan-qing, ZHU Yong, LU Jing-jing, JIANG Yue, . Experimental study of the rockburst model material with low-strength and high-brittleness [J]. Rock and Soil Mechanics, 2019, 40(6): 2039-2049.
[4] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[5] ZHANG Yu, WANG Ya-ling, YU Jin, ZHANG Xiao-dong, LUAN Ya-lin,. Creep behavior and its nonlinear creep model of deep gypsum mudstone [J]. , 2018, 39(S1): 105-112.
[6] YANG Chao, HUANG Da, CAI Rui, HUANG Run-qiu,. Triaxial unloading creep tests on rock mass with an open and penetrating flaw [J]. , 2018, 39(1): 53-62.
[7] ZHANG Qiang-yong, ZHANG Long-yun, XIANG Wen, JIANG Li-yu, DING Yan-zhi1,. Triaxial creep test of gneissic granite considering thermal effect [J]. , 2017, 38(9): 2507-2514.
[8] SHI Xiang, FAN Heng-hui, LIU Gang, LI Pu, ZHANG Run-hong. An experimental study of creep properties of dispersive soil [J]. , 2017, 38(4): 1015-1022.
[9] SUN Miao-jun, TANG Hui-ming, WANG Xiao-hong, HU Xin-li, WANG Ming-yuan, NI Wei-da,. Creep properties of sliding-zone soil from a creeping landslide [J]. , 2017, 38(2): 385-391.
[10] ZHANG Yu, WANG Ya-ling, ZHANG Xiao-dong, LI Jing, LUAN Ya-lin. Experimental study of creep behaviour of gypsum mudstone in a deep reservoir [J]. , 2017, 38(11): 3179-3186.
[11] LIANG Ning, WU Fa-quan, WANG Yun-feng, BAO Han, . Analysis of deformation and failure of rock mass of deep Guanshan tunnel under high in situ stress [J]. , 2016, 37(S2): 329-336.
[12] ZHANG Yu , JIN Pei-jie , XU Wei-ya , ZHAO Hai-bin , MEI Song-hua,. Experimental study of triaxial creep behavior and long-term strength of clastic rock in dam foundation [J]. , 2016, 37(5): 1291-1300.
[13] LUO Qing-zi , CHEN Xiao-ping , WANG Sheng , HUANG Jing-wu,. An experimental study of time-dependent deformation behaviour of soft soil and its empirical model [J]. , 2016, 37(1): 66-75.
[14] ZHOU Hui, LU Jing-jing, HU Shan-chao, ZHANG Chuan-qing, XU Rong-chao, MENG Fan-zhen. Influence of curvature radius of tunnels excavation section on slabbing of hard brittle rockmass under high stress [J]. , 2016, 37(1): 140-146.
[15] XIAO Ming-li , ZHUO Li , XIE Hong-qiang , HE Jiang-da , . Anisotropic rheological properties of quartz-mica schist under triaxial compression creep test [J]. , 2015, 36(S2): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[3] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[10] XIONG Wei, ZHOU Zeng-hui, YU Kai-biao, WU Ya-ping, LUO Wei. Concrete ultrasonic tomography imaging and improvement based on curved path[J]. , 2011, 32(2): 629 -634 .