›› 2010, Vol. 31 ›› Issue (5): 1475-1480.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of improvement of secondary consolidation settlement calculation method

FENG Zhi-gang1, ZHU Jun-gao2, FENG Hao-jie1   

  1. 1. Guangxi Electric Power Industry Investigation Design and Research Institute, Nanning 530023, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China
  • Received:2008-10-22 Online:2010-05-10 Published:2010-05-24

Abstract:

Soft clay has characteristics such as high moisture content and large void ratio. After excess pore water stress dissipation under loading, secondary consolidation settlement is produced. A lot of geotechnical engineering problems are caused by it and it is necessary to calculate and predict the settlement. The general secondary consolidation settlement calculation method has a shortage that when load duration is infinite, settlement infinite. An improved formula is presented aiming at the shortcoming. Brief review is given on Yin & Graham 1-D elastic viscoplastic model and improvement is given on it. A method to determine starting and finishing time of secondary consolidation settlement of soft foundation is put forward combined with the improved elastic viscoplastic model. The improved formula is feasible and more reasonable and can be used to calculate secondary consolidation settlement of foundation in actual engineering

Key words: secondary consolidation settlement, calculation method, elastic viscoplastic model, improvement

CLC Number: 

  • TU 443
[1] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[2] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[3] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[4] LI Rui-shan, YUAN Xiao-ming. Simplified calculation method for the fundamental period of layered soil sites [J]. Rock and Soil Mechanics, 2019, 40(8): 3227-3235.
[5] MA Wen-guan, LIU Run, LIAN Ji-jian, GUO Shao-zeng. The study of penetration resistance of bucket foundation in silt [J]. Rock and Soil Mechanics, 2019, 40(4): 1307-1312.
[6] WEI Jiu-chuan, HAN Cheng-hao, ZHANG Wei-jie, XIE Chao, ZHANG Lian-zhen, LI Xiao-peng, ZHANG Chun-rui, JIANG Ji-gang. Mechanism of fissure grouting based on step-wise calculation method [J]. Rock and Soil Mechanics, 2019, 40(3): 913-925.
[7] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, . Calculation and analysis of load transfer in large-diameter grouted pile in extra-thick fine sand layers [J]. , 2018, 39(4): 1386-1394.
[8] JIN Ya-bing. A method for determination of reinforcement width and depth of trench face of diaphragm wall [J]. , 2017, 38(S2): 273-278.
[9] JIN Ya-bing. Study of stability calculation method of trench face reinforcement of diaphragm wall [J]. , 2017, 38(S1): 305-312.
[10] ZHANG Yong-jie, XIA Yi-qi, FENG Xia-ting, WANG Gui-yao,. A simplified method and affecting factors for double pile-column foundation in abrupt slope [J]. , 2017, 38(6): 1705-1715.
[11] ZHOU Yun-tao. A method for calculating the stability of unstable rocks on Three Gorges Reservoir by fracture mechanics [J]. , 2016, 37(S1): 495-499.
[12] ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui,. A dynamic calculation method for evolution law of capillarity forces of liquid bridge between coarse particles [J]. , 2016, 37(8): 2263-2270.
[13] CHEN Zhong-qing , XU Chao , Lü Yue,. Model test of impact roller compaction for dry sand [J]. , 2015, 36(S2): 525-531.
[14] JIN Xiao-fei , LIANG Shu-ting , ZHU Xiao-jun , ZHANG Yu-liang,. Simplified method for calculating maximum deformation of diaphragm walls caused by braced excavation in soft clays [J]. , 2015, 36(S2): 583-587.
[15] WANG Yong-zhi , YUAN Xiao-ming , WANG Hai,. Improvement method of node-oriented measurement technique for dynamic centrifuge modeling [J]. , 2015, 36(S2): 722-728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[6] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[7] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[8] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[9] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[10] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .