›› 2010, Vol. 31 ›› Issue (5): 1609-1614.

• Numerical Analysis • Previous Articles     Next Articles

Simplified analysis of pile group based on discussion of interaction factors

QI Ke-jun, ZAI Jin-min, WANG Xu-dong, WANG Zhong-wei   

  1. Department of Civil engineering, Nanjing University of Technology, Nanjing 210009, China
  • Received:2008-08-22 Online:2010-05-10 Published:2010-05-24

Abstract:

The Interaction factor method is a kind of effective numerical methods to analyze pile groups; and the key point of this method is to get the interaction factors. The parameter computed by the traditional elastic method is lager than the real interaction. The new method to compute the interaction factors by the FEM considering the pile soil sliding and the elastoplasticity of soil is presented; and the simplified analysis method of pile groups is established. The influences of various parameters on interaction factors are studied by ABAQUS. Different methods are compared on the two history cases; and the results show that the new method by FEM is more suitable for the analysis of the real engineering cases.

Key words: interaction factors, pile group, FEM, simplified analysis

CLC Number: 

  • TU 443
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] CAO Hong, HU Yao, LUO Guan-yong. Research on approximate calculation method for incomplete wells with filter screen ends away from the confined aquifer level [J]. Rock and Soil Mechanics, 2019, 40(7): 2774-2780.
[3] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[4] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[5] CAI Qi-peng, GAN Gang-lu, NG C. W. W., CHEN Xing-xin, XIAO Zhao-yun, . Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting [J]. Rock and Soil Mechanics, 2019, 40(3): 1067-1075.
[6] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[7] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
[8] LI Zhi-yuan, LI Jian-bo, LIN Gao, . Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM [J]. , 2018, 39(11): 4242-4250.
[9] YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang, . Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table [J]. , 2018, 39(11): 4025-4032.
[10] MA Xue-ning, FU Jiang, WANG Jun, WANG Xu,. Effect of different surcharge loading forms on negative skin friction of pile groups [J]. , 2018, 39(10): 3531-3538.
[11] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
[12] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[13] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
[14] XIN Dong-dong, ZHANG Le-wen, SU Chuan-xi. Settlement research of pile groups in layered soils based on virtual soil-pile model [J]. , 2017, 38(8): 2368-2376.
[15] WANG Jia-quan, LIU Lei-lei, ZHU Qing-sheng, ZHANG Hao,. Experiment on residual stress of close-end pipe piles jacked into layered red clay [J]. , 2017, 38(7): 1878-1886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[9] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[10] XIONG Wei, ZHOU Zeng-hui, YU Kai-biao, WU Ya-ping, LUO Wei. Concrete ultrasonic tomography imaging and improvement based on curved path[J]. , 2011, 32(2): 629 -634 .