›› 2010, Vol. 31 ›› Issue (9): 2689-2694.

• Fundamental Theroy and Experimental Research •     Next Articles

Study of thermal conductivity model for unsaturated unfrozen and frozen soils

YUAN Xi-zhong 1, 2, 3,LI Ning 1,3,ZHAO Xiu-yun2,LI Jing2   

  1. 1. Institute of Geotechnical Engineering,Xi’an University of Technology, Xi’an 710048, China; 2. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China; 3. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2009-08-11 Online:2010-09-10 Published:2010-09-16

Abstract:

The thermal conductivity of soils is a key parameter in analysis of soil heat transfer in geotechnical engineering. This paper intends to develop a generalized thermal conductivity model for unsaturated unfrozen and frozen soils based on the concept of normalized thermal conductivity with respect to dry and saturated states of soils. 328 groups of experimental results for unfrozen and frozen soils, such as gravels, sands, silts, clays and peat, available from the literature were analyzed to develop the general relationship between the normalized thermal conductivity of soils and the degree of saturation. A unique normalized thermal conductivity and degree of saturation (normalized water content) relationship is obtained for the soils with different porosity and different thermal conductivity and water content relationships. There is a strong linear relationship between the inverse of normalized thermal conductivity (1/kr) and the inverse of degree of saturation (1/Sr) with lines passing through the coordinate (1,1). The soil types control the slope of the 1/kr-1/Sr lines. Accordingly, the model integrating the effects of soil types, density (or porosity) and water content (or degree of saturation) on the thermal conductivity of unfrozen and frozen soils is proposed. Method and parameters for calculating the thermal conductivity of dry and unfrozen or frozen saturated soils are given. The model generally predicts the thermal conductivity within an error of 20% for all kinds of (unfrozen and frozen) soils studied.

Key words: heat transfer, thermal conductivity, soil, frozen soil, degree of saturation

CLC Number: 

  • TH 122
[1] CHEN Ren-peng, WANG Peng-fei, LIU Peng, CHENG Wei, KANG Xin, YANG Wei, . Experimental study on soil-water characteristic curves of subgrade coal gangue filler [J]. Rock and Soil Mechanics, 2020, 41(2): 372-378.
[2] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[3] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[4] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[5] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[6] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[7] WANG Li-ye, ZHOU Feng-xi, QIN Hu, . Fractional creep model and experimental study of saturated saline soil [J]. Rock and Soil Mechanics, 2020, 41(2): 543-551.
[8] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[9] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[10] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[11] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[12] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[13] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[14] XIONG Hui, YANG Feng. Horizontal vibration response analysis of pile foundation in liquefied soil under Winkler foundation model [J]. Rock and Soil Mechanics, 2020, 41(1): 103-110.
[15] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[2] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[3] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[4] CHEN Zhi-qiang, ZHANG Yong-xing, ZHOU Jian-ying. Experimental study of deep tunnel surrounding rock rockburst proneness with similarity material simulating method based on digital speckle correlation technique[J]. , 2011, 32(S1): 141 -148 .
[5] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[6] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[7] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[8] GONG Si-yuan,DOU Lin-ming,HE Jiang,HE Hu,LU Cai-ping,MU Zong-long. Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment[J]. , 2012, 33(1): 41 -47 .
[9] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[10] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .