›› 2010, Vol. 31 ›› Issue (9): 2919-2924.

• Geotechnical Engineering • Previous Articles     Next Articles

Example analysis of sloping and floating upward prestressed pipe pile with treatment of a high-rise building in Zhejiang province

ZHANG Zhong-miao 1, 2,ZHANG Qian-qing 1, 2,HE Jing-yi1, 2,YU Feng 1, 2, 3,LIU Jun-wei 1, 2   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 3. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310018, China
  • Received:2009-02-23 Online:2010-09-10 Published:2010-09-16

Abstract:

Based on an engineering example, the reason of the sloping prestressed pipe pile (PPP) and the treatment method for the sloping PPP were given. First of all, the sloping condition of each pile should be made clearly, then the damaged position of every pile is clarified with low strain dynamic test; and at last the pertinence treatment measures are brought forward. It can be concluded that for the piles with pile shafts floating upward, they can be re-pressed; for the piles with serious pile top slopes and rupture of the pile shafts, they must be replaced by bored piles; for the piles with smaller pile top slopes and soundness of the pile shafts, they can be directly used after rectification and righting; for the piles with bigger pile top slopes and defect of the pile shafts, the first step is rectification and righting; and then strengthening the pile shafts by placing reinforcement cage and pouring concrete in the cores of the piles; and for the treated piles with lower bearing capacity, the bearing capacity of the bearing platform should be strengthened by adding bored piles. The measured settlement of building is small and uniform, and the maximum settlement is only 9 mm.

Key words: prestressed pipe pile, slope, floating upward, rectification, pour concrete in core of pile, settlement

CLC Number: 

  • TU 473
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[3] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[4] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[5] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[6] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[7] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[8] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[9] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[10] LIU Zu-qiang, LUO Hong-ming, ZHENG Min, SHI Yun-jiang, . Study on expansion-shrinkage characteristics and deformation model for expansive soils in canal slope of South-to-North Water Diversion Project [J]. Rock and Soil Mechanics, 2019, 40(S1): 409-414.
[11] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[12] WANG Wei, CHEN Guo-qing, ZHENG Shui-quan, ZHANG Guang-ze, WANG Dong, . Study on the vector sum method of slope considering tensile-shear progressive failure [J]. Rock and Soil Mechanics, 2019, 40(S1): 468-476.
[13] JIANG An-nan, ZHANG Quan, WU Hong-tao, DUAN Long-mei, JIAO Ming-wei, BAI Tao, . Stability analysis of slope affected by blasting based on improved local safety method [J]. Rock and Soil Mechanics, 2019, 40(S1): 511-518.
[14] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[15] XU Jing-jing, TANG Xu-hai, LIU Quan-sheng , FENG Yu-fei. Investigation on trajectory of rolling rock affected by rock fragmentation based on energy tracking method [J]. Rock and Soil Mechanics, 2019, 40(S1): 541-548.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] WEI Gang,GUO Zhi-we,WEI Xin-jiang,CHEN Wei-jun. Analysis of coupled seepage and stress of shield tunnel launching accident in soft clay[J]. , 2010, 31(S1): 383 -387 .
[5] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[6] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[7] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[8] YIN Guang-zhi,WANG Deng-ke,ZHANG Dong-ming,WEI Zuo-an. Endchronic damage constitutive model of coal containing gas[J]. , 2009, 30(4): 885 -889 .
[9] HOU Gong-yu,NIU Xiao-song. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. , 2009, 30(6): 1555 -1562 .
[10] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .