›› 2010, Vol. 31 ›› Issue (9): 3019-3024.

• Testing Technology • Previous Articles    

Application of general-purpose computation on GPUs to geotechnical engineering

LIU Ming-gui,LIU Shao-bo,ZHANG Guo-hua   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2009-01-12 Online:2010-09-10 Published:2010-09-16

Abstract:

Because of the complex geological conditions of geotechnical engineering and its increasing project scale, the requirements of the calculation speed for large-scale numerical simulation become more strict. Graphics processing unit (GPU), the core unit of graphics card, can solve this problem with the advantages of parallel computing, high-speed floating-point performance and high memory bandwidth. The hardware architecture differences between GPU and CPU are analyzed firstly. Then the advantages and disadvantages of CPU and GPU are summarized; the development and achievement of general-purpose computation on GPU are described in detail. Finally, an example about application of GPU to stochastic differential equations of permeability is given; the advantage of GPU is displayed and the application of GPU computing to geotechnical engineering is discussed.

Key words: GPGPU, CUDA, Stream, OpenCL, high-performance computing, geotechnical engineering

CLC Number: 

  • TU 443
[1] ZHAO Qiang, JIAO Yu-yong, ZHANG Xiu-li, XIE Bi-ting, WANG Long, HUANG Gang-hai, . Explicit time integration based spherical DDA calculation method [J]. Rock and Soil Mechanics, 2019, 40(11): 4515-4522.
[2] LI Zheng, HE Chuan, YANG Sai-zhou, YANG Wen-bo,. Seepage model experiments on urban tunnel influenced by dynamic and hydrostatic head [J]. , 2018, 39(5): 1767-1774.
[3] FAN Wen-liang, WANG Yu-le, WEI Qi-ke, YANG Peng-chao, LI Zheng-liang, . Improved fourth-moment method for reliability analysis of geotechnical engineering [J]. , 2018, 39(4): 1463-1468.
[4] HUANG Ming-hua, ZHAO Ming-hua, CHEN Chang-fu. Influence of anchorage length on stress in bolt and its critical value calculation [J]. , 2018, 39(11): 4033-4041.
[5] XIONG Zi-ming, LU Hao, WANG Ming-yang, QIAN Qi-hu, RONG Xiao-li,. Research progress on safety risk management for large scale geotechnical engineering construction in China [J]. , 2018, 39(10): 3703-3716.
[6] FANG Yan-bing, SU Yong-hua, XIAO Wang, LIANG Bin. Non-probabilistic reliability model for implicit performance function based on subinterval method [J]. , 2017, 38(4): 1171-1178.
[7] YAN Shu-wang, LIN Shu, HUO Zhi-liang, CHU Jian, GUO Wei,. Coupled Eulerian-Lagrangian finite element analysis of suction caisson penetration processes under hydraulic pressure [J]. , 2017, 38(1): 247-252.
[8] ZHANG Dong-ming ,ZHENG Bin-bin ,YIN Guang-zhi ,DAI Jin-xin ,TANG Fu-jiao,. Model tests on upstream dam-building method using concentrated and classified tailings [J]. , 2016, 37(7): 1832-1838.
[9] FU Xiao-dong,SHENG Qian,ZHANG Yong-hui,LENG Xian-lun, . High efficient algorithms for solving linear equations in discontinuous deformation analysis [J]. , 2016, 37(4): 1171-1178.
[10] ZHANG You-liang, TAN Fei, ZHANG Li-ren, SHI Ming-ming. Scalable parallel computation for finite element model with hundreds of millions of elements in geotechnical engineering [J]. , 2016, 37(11): 3309-3316.
[11] ZHANG Lei , TANG Xiao-song , LI Dian-qing , CAO Zi-jun , . System reliability analysis of geotechnical structures based on the Copula function [J]. , 2016, 37(1): 193-202.
[12] DONG Wei-xin, WANG Xiang-nan, WANG Yuan, YU Yu-zhen. Application of three-dimensional transitional isoparametric elements to finite element analysis of geotechnical engineering problems [J]. , 2015, 36(5): 1455-1462.
[13] WANG Hao , QIN Wei-min , JIAO Yu-yong , HE Zheng . Transitions and opportunities of geotechnical engineering monitoring in coming big data era [J]. , 2014, 35(9): 2634-2641.
[14] FU Xiao-dong, SHENG Qian, ZHANG Yong-hui. Parallel computing method for discontinuous deformation analysis using OpenMP [J]. , 2014, 35(8): 2401-2407.
[15] SHEN Hui , LUO Xian-qi , ZHENG An-xing , BI Jin-feng , WENG Yong-hong,. Three-dimensional modeling for numerical simulation of arch dam abutment rock mass structures [J]. , 2014, 35(5): 1455-1460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Zhen-jun,WANG Shui-lin,TANG Hua,WANG Wei,GE Xiu-run. A new optimization approach for slope reliability analysis[J]. , 2010, 31(3): 713 -718 .
[2] LI Xin-ping, DAI Yi-fei, LIU Jin-huan, ZENG Ming , LIU Li-sheng, ZHANGKai-g. Test study and numerical simulation analysis of explosion in steel tubes[J]. , 2009, 30(S1): 5 -9 .
[3] CAO Wen-gui,ZHAO Heng,ZHANG Yong-jie,ZHANG Ling. Strain softening and hardening damage constitutive model for rock considering effect of volume change and its parameters determination method[J]. , 2011, 32(3): 647 -654 .
[4] WANG Ying-ming, LI Xiao-lun. Introduction to treatment of collapsible loess subgrade for Shaanxi section of Zhengzhou-Xi’an passenger dedicated railway line[J]. , 2009, 30(S2): 283 -286 .
[5] ZHANG Ping, FANG Ying-guang, YAN Xiao-qing, HE Zhi-wei1. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. , 2011, 32(S1): 388 -0391 .
[6] YE Fei , HE Chuan , WANG Shi-min. Analysis of mechanical characteristic of shield tunnel segments lining and its influence during construction[J]. , 2011, 32(6): 1801 -1807 .
[7] XU Fu-le ,WANG En-yuan ,SONG Da-zhao ,SONG Xiao-yan ,WEI Ming-yao. Long-range correlation and multifractal distribution of acoustic emission of coal-rock[J]. , 2011, 32(7): 2111 -2116 .
[8] NIU Lei, YAO Yang-ping, CUI Wen-jie, WAN Zheng. Three-dimensional method for constitutive relationship of overconsolidation unsaturated soil[J]. , 2011, 32(8): 2341 -2345 .
[9] ZHANG An-bing , GAO Jing-xiang , ZHANG Zhao-jiang. Deformation analysis and prediction of building above old mine goaf based on multiscale method[J]. , 2011, 32(8): 2423 -2428 .
[10] HSIAO Fu-yuan , WANG Chien-li , SHAO How-jei. Mechanical parameters estimation and tunnel deformation study for brittle rock under high overburden condition[J]. , 2011, 32(S2): 109 -114 .