›› 2010, Vol. 31 ›› Issue (S1): 261-265.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Slope stability analysis of Mashui River large bridge for Shanghai-Chengdu national trunk highway

WANG Guo-bin 1, 2   

  1. 1. Communications Planning and Design Institute of Hubei Province, Wuhan 430051, China; 2. School of Engineering, China University of Geosciences, Wuhan 430074, China
  • Received:2010-04-25 Online:2010-08-10 Published:2010-09-09

Abstract:

Mashui River large bridge is a key project of the Shanghai-Chengdu national trunk highway; the slope stability of Mashui River large bridge is difficult to be evaluated due to the complex geological conditions and tectonic evolution. How to reflect the geological conditions and tectonic evolution in slope stability analysis is very important for the result objectivity. According to the geological structure and tectonic character of rock mass, the author summarized the deformation and failure mode of the slope. On the basis of the failure mode, the numerical model with finite difference method was built. The stress and deformation state were simulated with the slope under three states, such as in natural state, the action of a bridge and the 50 meters rising of water level. The results indicate that the slope stress field changes very much locally and the influence depth reaches 50 meters. Therefore, an increased cross-section of pile foundation is suggested to improve its bearing capacity.

Key words: Mashui River large bridge, slope, network map of structural plane, stability, numerical simulation

CLC Number: 

  • TU 457
[1] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[2] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[3] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[4] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[5] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[6] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[7] ZHU Lei, HUANG Run-qiu, CHEN Guo-qing, YAN Ming, . Mechanical model and evolution of fracture system with a gentle dip angle in rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 53-62.
[8] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[9] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[10] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[11] LIU Zu-qiang, LUO Hong-ming, ZHENG Min, SHI Yun-jiang, . Study on expansion-shrinkage characteristics and deformation model for expansive soils in canal slope of South-to-North Water Diversion Project [J]. Rock and Soil Mechanics, 2019, 40(S1): 409-414.
[12] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[13] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[14] WANG Wei, CHEN Guo-qing, ZHENG Shui-quan, ZHANG Guang-ze, WANG Dong, . Study on the vector sum method of slope considering tensile-shear progressive failure [J]. Rock and Soil Mechanics, 2019, 40(S1): 468-476.
[15] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .