›› 2010, Vol. 31 ›› Issue (S1): 349-356.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Numerical simulation analysis of influence of blasting construction of foundation trench of immersed tunnel on stability of embankment

ZHANG Yu-cheng 1, 2, 3, YANG Guang-hua 1, 2, JIANG Yan2, YAO Jie1, SHI Yong-sheng2   

  1. 1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 2. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China; 3. The Third Chinese Bureau of Construction Wuhan 430070, China
  • Received:2010-04-13 Online:2010-08-10 Published:2010-09-09

Abstract:

The characteristics of load application and the demands of blasting vibration are analyzed; and the equivalent load application method is proposed based on Saint-Venant principle, that is getting blasting loads equivalent first, then applying the equivalent loads to the line or area of centers of the same blast hole row, in order to simulate blasting load[8]. The results of numerical calculation show that the equivalent method has differences in the vicinity but better fit in further zone. With this equivalent method, the influence of blasting construction of foundation trench of immersed tunnel on the stability of embankment is calculated and analyzed by three-dimensional solid numerical model; the vibratory responses of different positions and different depths are calculated; and based on this, vibration reducing measures are also researched in order to reduce the influence of blasting vibration on existing constructions, so as to provide a reference for similar projects.

Key words: blast, equivalent load, existing foundation trench, stability, simulation blast, equivalent load, existing foundation trench, stability, simulation

CLC Number: 

  • O 241
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] ZHOU Cui-ying, KONG Ling-hua, CUI Guang-jun, YU Lei, LIU Zhen, . Molding simulation of soft rock based on natural red bed materials [J]. Rock and Soil Mechanics, 2020, 41(2): 419-427.
[4] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[5] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[6] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[7] JIANG Shui-hua, FENG Ze-wen, LIU Xian, JIANG Qing-hui, HUANG Jin-song, ZHOU Chuang-bing. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach [J]. Rock and Soil Mechanics, 2020, 41(1): 325-335.
[8] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[9] CHEN Wu, ZHANG Guo-hua, WANG Hao, ZHONG Guo-qiang, WANG Cheng-tang, . Evaluation of possibility of tunnel collapse by drilling and blasting method based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(S1): 319-328.
[10] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[11] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[12] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[13] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[14] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[15] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[4] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[5] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[6] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[7] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[8] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[9] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .
[10] JIN Jie-fang , LI Xi-bing , YIN Zhi-qiang , ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J]. , 2011, 32(5): 1385 -1393 .