›› 2011, Vol. 32 ›› Issue (1): 15-20.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Field test research on elimination of systematic rock bolts in weak rock tunnel

CHEN Jian-xun1,YANG Shan-sheng2,LUO Yan-bin1,WANG Meng-shu3   

  1. 1. Key Laboratory for Bridge and Tunnel of Shaanxi Province, Chang’an University, Xi’an 710064, China; 2. Shaanxi Xiyan Railway Co. Ltd., Xi’an 710054, China; 3. School of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044, China
  • Received:2009-11-15 Online:2011-01-10 Published:2011-01-19

Abstract:

In weak rock tunnel, elimination of systematic rock bolts is advanced, and the primary support structure is the combination of steel arch, shotcrete, reinforcing mesh, feet-lock rock bolt and longitudinal link steel bar. This paper is based on Baojiashan tunnel. Two test sections are chosen and field test is carried out. With systematic rock bolts replaced by feet-lock rock bolts, two models of systematic rock bolts and non-systematic rock bolts are established and analyzed comparatively. The content of comparative tests includes: the clearance convergence of tunnel primary support, surrounding rock pressure, steel arch stress, shotcrete stress, axial force of rock bolt and longitudinal link steel bar stress. The result shows that the deformation of primary support in the two test sections tends stable and the structure is safe, which shows that the elimination of systematic rock bolts does not affect the security and stability of primary support; some rock bolts in the arch part are subjected to tension; and some are subjected to compression; but the force is minor, and the maximum tensile stress is only 11.8% of ultimate strength of steel, so the support action of rock bolts in the arch part is not obvious; most feet-lock rock bolts are subjected to tension, and the maximum tensile stress is up to 191 MPa, so the feet-lock rock bolts play an important role in the support system. The elimination of systematic rock bolts will reduce construction process, lower engineering cost and shorten procedure cycle time, which is conductive to an early closure of surrounding rock to form a complete supporting structure. It will get a significant economic value and social benefits.

Key words: tunnel engineering, weak surrounding rock, systematic rock bolts, feet-lock rock bolt, field test

CLC Number: 

  • U 451
[1] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[2] YAN Jian, HE Chuan, YAN Qi-xiang, XU Jin-hua, . In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel [J]. Rock and Soil Mechanics, 2019, 40(9): 3593-3602.
[3] WU Shuang-shuang, HU Xin-li, GONG Hui, ZHOU Chang, XUChu, WANG Qiang, YING Chun-ye, . Shear properties of pile-soil of three modes of bored piles in field tests [J]. Rock and Soil Mechanics, 2019, 40(7): 2838-2846.
[4] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[5] YU Zheng, YANG Long-cai, ZHANG Yong, ZHAO Wei, . Uncertainty analysis of tunnel surrounding rock deformation considering consistency of geological heterogeneity features [J]. Rock and Soil Mechanics, 2019, 40(5): 1947-1956.
[6] WANG Qin-ke, MA Jian-lin, HU Zhong-bo, WANG Bin, . Field tests on bearing behaviors of uplift piles in soft rock with shallow overburden [J]. Rock and Soil Mechanics, 2019, 40(4): 1498-1506.
[7] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[8] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[9] REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, LIU Han-long, . Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile [J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864.
[10] WANG Jian-feng, LI Tian-bin, MA Chun-chi, ZHANG Hang, HAN Yu-xuan, ZHOU Xiong-hua, JIANG Yu-peng, . Gravitational search algorithm based microseismic positioning in tunnel surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(11): 4421-4428.
[11] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[12] CUI Guang-yao, QI Jia-suo, WANG Ming-sheng, . Field test study on large deformation control of surrounding rock of cleaved basalt tunnel [J]. Rock and Soil Mechanics, 2018, 39(S2): 231-237.
[13] GU Shuan-cheng, ZHOU Pan, HUANG Rong-bin. Stability analysis of tunnel supported by bolt-surrounding rock bearing structure [J]. , 2018, 39(S1): 122-130.
[14] WANG Bing-long, MEI Zhen, XIAO Jun-hua. Experimental study of subgrade reinforcement and diseases treatment by geocell [J]. , 2018, 39(S1): 325-332.
[15] LI Xiao-fei, SUN Jiang-tao, CHEN Wei-zhong, YUAN Jing-qiang, LIU Jin-quan, ZHANG Qing-yan,. Strength and anti-washout property of fiber silica fume cement grout [J]. , 2018, 39(9): 3157-3163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .