›› 2011, Vol. 32 ›› Issue (1): 27-32.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Changing mechanism of microstructure of intact soft clay considering anisotropy

WEN Xiao-gui,ZHANG Xun,ZHOU Jian,GUAN Lin-bo,XIE Xin-yu   

  1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
  • Received:2009-09-04 Online:2011-01-10 Published:2011-01-19

Abstract:

Scanning electron microscope (SEM) was used to observe microstructure of soft clay before and after shearing under complex stress path, which analyzed microscopic nature on anisotropy of normalized shear strength of intact soft clay in three respects including changing characteristics of pore arrangement, changing characteristics of pore pattern and changing characteristics of pore scale. Test results revealed that the pore arrangement was disorder before and after shearing, and changes of pore orientation were very small, which influenced very little on macroscopic properties of clay. Changing characteristics of pore pattern contributed significantly to anisotropy of normalized shear strength of clay in coefficient of intermediate principal stress equal to 0. Changing characteristics of pore scale contributed significantly to anisotropy of normalized shear strength of clay in coefficient of intermediate principal stress equal to 0.5. Therefore, the micro-change factors which influenced anisotropy of normalized shear strength of clay after shearing were different in different coefficients of intermediate principal stress.

Key words: microstructure of soil, anisotropy, coefficient of intermediate principal stress, normalized shear strength

CLC Number: 

  • TU 411.92
[1] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[2] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[3] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[4] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[5] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[6] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[7] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[8] ZHOU Jian, CAI Lu, LUO Ling-hui, YING Hong-wei, . Limit equilibrium analysis of anisotropic soft clay stability against excavation basal heave [J]. Rock and Soil Mechanics, 2019, 40(12): 4848-4856.
[9] TIAN Yu, YAO Yang-ping, LU De-chun, DU Xiu-li, . Cross-anisotropic Mohr-Coulomb criterion and formula of passive earth pressure based on modified stress method [J]. Rock and Soil Mechanics, 2019, 40(10): 3945-3950.
[10] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[11] ZHOU Hui, CHENG Guang-tan, ZHU Yong, ZHANG Chun-sheng, . Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118-126.
[12] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[13] ZHANG Kun-yong, LI Wei, Charkley Nai Frederick, CHEN Shu,. True triaxial test on clay mixed with gravel with stress increment loading from minor principal stress direction [J]. , 2018, 39(9): 3270-3276.
[14] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[15] TIAN Yu, YAO Yang-ping, LUO Ting. Explanation and modeling of non-coaxiality of soils from anisotropy [J]. , 2018, 39(6): 2035-2042.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .