›› 2011, Vol. 32 ›› Issue (4): 961-966.

• Fundamental Theroy and Experimental Research •     Next Articles

Research for time-temperature equivalence effect of rock (II): Experimental research

ZHU Yuan-guang,LIU Quan-sheng   

  1. (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China)
  • Received:2010-10-26 Online:2011-04-10 Published:2011-04-29
  • About author:ZHU Yuan-guang (1985-), male, doctor. Research direction: the longterm stability of underground engineering
  • Supported by:

    Long-term evolution of stability and permeability of high-level radioactive waste repository surrounding rock under THMC coupling process

Abstract:

With the creep test data of granite taken from Three Gorges, the existence of time-temperature equivalence effect (TTEE) of granite is investigated. Based on the creep test data at different temperatures, which are 20 ℃, 60 ℃, 80 ℃, 100 ℃, 200 ℃, 300 ℃, four-component viscoelastic Burgers model is presented to characterize the creep curves. The parameters of elasticity modulus and viscosity coefficient in the constitutive model at different temperatures and their functional dependences on temperature are obtained. Then, according to the basic theory of TTEE presented in research (I), the TTEE of granite is investigated through modifying the compliance curves with vertical shift function and checking the coincidence of the modified curves with horizontal shift functions. It is concluded that: ① Burgers model could appropriately characterize the creep property of granite in a short time scale. ② Both elastic modulus and viscosity coefficient in the Burgers model decay exponentially with temperature. ③ The coincidence of the curves at different temperatures after vertical shift modification and horizontal shift is fine, which indicates the existence of TTEE of granite. ④The master curves which reflect the long time scale test data at temperatures 20 ℃, 100 ℃, 200 ℃ are obtained.

Key words: granite, time-temperature equivalence effect (TTEE), viscoelasticity, Burgers model

[1] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[2] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[3] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[4] TIAN Yi, WU Wen-bing, JIANG Guo-sheng, MEI Guo-xiong, XU Bao-jun, . One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary [J]. Rock and Soil Mechanics, 2019, 40(8): 3054-3061.
[5] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[6] LIU Jian, CHEN Liang, WANG Chun-ping, MA Li-ke, WANG Ju. A new method of calculating gas permeability of rock under unsteady flow condition and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1721-1730.
[7] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[8] ZHAO Fei, WANG Hong-jian, HE Man-chao, YUAN Guang-xiang, LUO Yao-wu, . Acoustic emission characteristics of granite specimens with different heights in rockburst tests [J]. Rock and Soil Mechanics, 2019, 40(1): 135-146.
[9] GUO Lin-ping, KONG Ling-wei, XU Chao, YANG Ai-wu,. Preliminary study of quantitative relationships between physical and mechanical indices of granite residual soil in Xiamen [J]. , 2018, 39(S1): 175-180.
[10] XIE Jing-li, MA Li-ke, GAO Yu-feng, CAO Sheng-fei, LIU Yue-miao. Thermal conductivity of mixtures of Beishan bentonite and crushed granite [J]. , 2018, 39(8): 2823-2828.
[11] AN Ran, KONG Ling-wei, LI Cheng-sheng, GUO Ai-guo, . A proposed method to determine in-situ shear modulus and its degradation for granite residual soil and the suitability analysis [J]. Rock and Soil Mechanics, 2018, 39(12): 4429-4435.
[12] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[13] ZHANG Xi-wei, WANG Gang, CAI Ming, XU Quan,. Deformation behaviour and brittleness of Linghai granite [J]. , 2018, 39(10): 3515-3524.
[14] WANG Chao-sheng, ZHOU Hong-wei, HE Shu-sheng, WANG Zi-hui, LIU JIan-feng,. Effect of unloading rates on strength of Beishan granite [J]. , 2017, 38(S2): 151-157.
[15] WANG Jian-guo, YANG Yang, GUO Yan-hui, LIU Yang, HUANG Yong-hui, WANG Li-na,. Low temperature effect of saturated granite on dynamic characteristics at high strain rates [J]. , 2017, 38(S2): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[6] JIANG Xue-liang ,YANG Hui ,CAO Ping. FLAC3D analysis of interaction between goaf and opencut mining slope with 3D geological model using SURPAC[J]. , 2011, 32(4): 1234 -1240 .
[7] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[8] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[9] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[10] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .