›› 2011, Vol. 32 ›› Issue (S1): 392-0396.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical behavior of soil-sand-cement admixture

HE Wen-xiu, SHEN Xiang-dong   

  1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
  • Received:2010-12-10 Online:2011-05-15 Published:2011-05-16

Abstract: Through unconfined compressive strength test of soil-sand-cement in laboratory, its development rules in different sand contents and different curing ages are studied. The experimental results indicate that the mixing with a certain amount of sand can significantly increase the strength of cement-soil under a certain cement content condition. When the cement content is 10%, the sand content is 50% reaching maximum strength. And according to the measured stress-strain curves, through detailed analysis of the soil-sand-cement failure modes, it is brittle shearing damage. Moreover, with the increasing amount of sand content, the shear angle of the soil-sand-cement admixture increases gradually. At the same time, the reasons for unconfined compressive strength of soil-sand-cement admixture growth are analyzed from different viewpoints, so as to provide test data and theoretical basis for the practical application of engineering

Key words: soil-sand-cement admixture, unconfined compressive strength, sand content, curing age, stress-strain curve, destruction feature

CLC Number: 

  • TU 411.7
[1] ZHANG Chen-yang, CHEN Min, HU Ming-jian, WANG Xin-zhi, TANG Jian-jian, . Effect of fine particles content on shear strength of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202.
[2] GAO Yun-chang, GAO Meng, YIN Shi, . Experiments on static characteristics of sea sand solidified by polyurethane [J]. Rock and Soil Mechanics, 2019, 40(S1): 231-236.
[3] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[4] SHEN Tai-yu, WANG Shi-ji, XUE Le, LI Xian, HE Bing-hui, . An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124.
[5] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[6] ZHA Fu-sheng, LIU Jing-jing, XU Long, DENG Yong-feng, YANG Cheng-bin, CHU Cheng-fu, . Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash [J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580.
[7] YANG Ai-wu, HU Yao, YANG Shao-kun, . New solidification technology and mechanical properties of municipal sludge [J]. Rock and Soil Mechanics, 2019, 40(11): 4439-4449.
[8] SONG Hong-qiang, ZUO Jian-ping, CHEN Yan, LI Li-yun, HONG Zi-jie, . Revised energy drop coefficient based on energy characteristics in whole process of rock failure [J]. Rock and Soil Mechanics, 2019, 40(1): 91-98.
[9] HUANG Zheng-hong, DENG Shou-chun, LI Hai-bo, YU Chong,. Tensile tests on plate specimens with bilateral asymmetric cracks [J]. , 2018, 39(S1): 267-274.
[10] FANG Xiang-wei, LI Jing-xin, LI Jie, SHEN Chun-ni,. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns [J]. , 2018, 39(S1): 1-8.
[11] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[12] CHEN Wei-chang, WANG Si-jing, LI Li, ZHANG Xiao-ping, WANG Yan-bing, . Test on mechanical characteristics of modified ginger nut [J]. , 2018, 39(5): 1796-1804.
[13] ZHANG Ding-wen, XIANG Lian, CAO Zhi-guo, . Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. , 2018, 39(1): 29-35.
[14] JIA Jun, XIAO Ben-lin, KE Chang-ren. Simulation of three-dimensional homogeneous rock constitutive relation based on virtual internal bond model [J]. , 2017, 38(3): 740-746.
[15] LIU Jin-ming, OU Zhong-wen, XIAO Han-bing, MO Jin-chuan, YANG Kang-hui. Early strength of stabilized soil affected by functional components [J]. , 2017, 38(3): 755-761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[2] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .