›› 2011, Vol. 32 ›› Issue (S1): 636-0641.

• Numerical Analysis • Previous Articles     Next Articles

Application of strength reduction FEM to stability analysis of high fill slope in Kunming new airport

CHEN Jin-feng1, 2, SONG Er-xiang1, XU Ming1   

  1. 1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China; 2. Institute of Architectural Design and Research, Logistic Engineering University, Chongqing 400041, China)
  • Received:2011-03-10 Online:2011-05-15 Published:2011-05-16

Abstract: Two kinds of ground treatment methods, gravel piles and dynamic replacement methods, are introduced, which are the most popular treatments at high fill foundation of airport in mountainous area. Comparative studies are carried out by the strength reduction FEM to analyze slope stability of 79-79? engineering geological profile in Kunming new airport under different ground treatments. Comparison between the outcome of stability analysis calculated by FEM and that calculated by simplified Bishop method is also implemented. Moreover, without reducing soil strength parameters, comparative studies of displacements and shear strains of the slope under different ground treatments are performed. The results show that the disposal of the relative soft foundation within slope toe with gravel piles or dynamic replacement method can not only enhance slope safety factor effectively, but also reduce maximum displacements and shear strains by leaps and bounds. Furthermore, safety factors and the most dangerous sliding surfaces calculated by the strength reduction FEM are close to that calculated by simplified Bishop method, when the most dangerous sliding surfaces are close to arc shape. And safety factors, calculated by the strength reduction FEM, are conservative as they are slightly smaller than those calculated by simplified Bishop method. Finally, gravel pile method is better than dynamic replacement method when the coating over moderately weathered bedrock is deeper than the treatment depth of dynamic replacement.

Key words: high fill slope, strength reduction FEM, stability analysis, comparative studies, ground treatment, gravel piles method, dynamic replacement method

CLC Number: 

  • TU 43
[1] NIE Xiu-peng, PANG Huan-ping, SUN Zhi-bin, XIE Song-mei, HOU Chao-qun. Upper bound analysis of seismic stability of 3D reinforced slopes [J]. Rock and Soil Mechanics, 2019, 40(9): 3483-3492.
[2] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
[3] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[4] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[5] ZHANG Long-fei, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, KANG Tian. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide [J]. Rock and Soil Mechanics, 2019, 40(12): 4767-4776.
[6] HUANG Jian, YAO Yang-ping. A practical model for predicting the failure time of high fill slope [J]. Rock and Soil Mechanics, 2019, 40(10): 4057-4064.
[7] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[8] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[9] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[10] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[11] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[12] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[13] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
[14] FU Gui-jun, ZHANG Si-yuan, ZHANG Yu-jun. A rheological model for dual-pore-fracture rock mass and its application to finite element analysis of underground caverns [J]. , 2017, 38(2): 601-609.
[15] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[3] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[4] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[5] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[6] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[7] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[8] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[9] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[10] XU Yang, GAO Qian, LI Xin, LI Jun-hua, JIA Yun-xi. In-situ experimental study of permeability of rock and soil aggregates[J]. , 2009, 30(3): 855 -858 .