›› 2012, Vol. 33 ›› Issue (10): 2910-2916.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Permeability and heavy metal retardation of sewage sludge barrier

ZHANG Hu-yuan1, YANG Bo1,GAO Quan-quan2,ZHANG Guang-wei1   

  1. 1. MOE Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000, China; 2. Northwest Water Conservancy and Hydropower Co., Ltd., Xi’an 710065, China
  • Received:2011-05-24 Online:2012-10-10 Published:2012-10-19

Abstract: At present, heavy metal pollution in the leachate of waste disposal site only can be controlled by hydraulic barrier of extremely low permeability. The chemical field of the barrier has never been used for the retardation of heavy metal pollution. A conception of “sewage sludge barrier” is proposed based on the integration of low permeability with plentiful organic matter and anaerobe contained in the sewage sludge. To investigate the feasibility of the sewage sludge barrier, the flexible wall permeameter is used in this study to measure hydraulic conductivity of sewage sludge under different effective stresses; and the chemical properties of the effluent are monitored. Test results show that with the increase in effective stress, the dry density increases and the logarithm of hydraulic conductivity decreases linearly with decrease in void ratio. The formation of biofilm and inorganic precipitates with the anaerobic respiration, and the increase of the thickness of diffuse double layer of the clay particle within sewage sludge specimens are also responsible for the decrease in hydraulic conductivity. Hydraulic conductivity of sewage sludge as low as , combined with strong adsorption and neutral to weak alkaline reducing conditions induced by the anaerobic respiration, makes the heavy metals of Zn and Cd retarded effectively.

Key words: sewage sludge, hydraulic conductivity, effective stress, anaerobic microorganism, heavy metal

CLC Number: 

  • TU 993.3
[1] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[2] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[3] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[4] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[5] XU Hao-qing, ZHOU Ai-zhao, JIANG Peng-ming, LIU Shun-qing, SONG Miao-miao, CHEN Liang, . Study on bentonite content of different sand-bentonite vertical cutoff wall backfill materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 424-430.
[6] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[7] FAN Ri-dong, LIU Song-yu, DU Yan-jun, . Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites [J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996.
[8] MAO Xiao-long, LIU Yue-tian, GUAN Wen-long, REN Xing-nan, FENG Yue-li, DING Zu-peng, . An effective stress equation for pore volume strain [J]. Rock and Soil Mechanics, 2019, 40(8): 3004-3010.
[9] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[10] ZHA Fu-sheng, LIU Jing-jing, XU Long, DENG Yong-feng, YANG Cheng-bin, CHU Cheng-fu, . Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash [J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580.
[11] CHEN Yu-min, CHEN Run-ze, HUO Zheng-ge, . Study of flow deformation of saturated suspended plastic sand by visualized ring shear tests [J]. Rock and Soil Mechanics, 2019, 40(10): 3709-3716.
[12] YI Jin-xiang, LI Lei, WANG Pei, YANG Guang,. Compaction characteristics of sewage sludge-municipal solid waste mixed landfill [J]. , 2018, 39(S1): 453-460.
[13] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[14] CHEN Xing-zhang, CHEN Hui, YOU Yong, LIU Jin-feng,. Experiment on distribution and influence factors of uplift pressure acting on bottom of debris flow check dam [J]. , 2018, 39(9): 3229-3236.
[15] ZHANG Tian-jun, SHANG Hong-bo, LI Shu-gang, WEI Wen-wei, BAO Ruo-yu, PAN Hong-yu,. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states [J]. , 2018, 39(7): 2361-2370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] ZHANG Yi-hu, ZHOU Huo-ming, WU Ai-qing. Post processing of discontinuity network modeling result[J]. , 2009, 30(9): 2855 -2861 .
[3] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[4] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[5] YANG Tian-hong, CHEN Shi-kuo, ZHU Wan-cheng, LIU Hong-lei. Coupled model of gas-solid in coal seams based on dynamic process of pressure relief and gas drainage[J]. , 2010, 31(7): 2247 -2252 .
[6] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[7] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[8] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[9] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[10] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .