›› 2018, Vol. 39 ›› Issue (9): 3229-3236.doi: 10.16285/j.rsm.2016.2670

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experiment on distribution and influence factors of uplift pressure acting on bottom of debris flow check dam

CHEN Xing-zhang1, CHEN Hui1, YOU Yong2, LIU Jin-feng2   

  1. 1. School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
  • Received:2016-11-14 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41372301), the STS Project of Chinese Academy of Sciences(KFJ-EW-STS-094) and the National Key Technology R & D Program(2014BAL05B01).

Abstract: The uplift pressure acting on a bottom of debris flow check dam can counteract partial effective weight and reduce the overturning stability of the dam. To study the distribution laws and influence factors of uplift pressure, a check dam model and an acquisition system of uplift pressure were designed and produced. A series of simulation tests of uplift pressure was conducted based on different gully bed slopes and different accumulations in front of the dam heel. The experimental results show that the uplift pressure linearly decreases from dam heel to dam toe. When placing accumulations in front of the dam, the absolute values of correlation coefficients between the uplift pressure and the distance to dam heel exceed 0.98. The uplift pressure decreases with the increase of gully bed slope and the influence of the bed slop on the pressure at the dam heel is greater than that of the dam toe. The permeabilities of materials placed on gully bed and accumulations in front of the dam all have impacts on uplift pressure. The lower their permeabilities are, the lower the uplift pressure will be. The permeability of accumulation in front of the dam heel also has a marked impact on the distribution laws of uplift pressure; and the lower the permeability is, the more obvious the distribution laws are. These research results will be the basis of further study on process and mechanism of uplift pressure acting on a bottom of check dam.

Key words: uplift pressure, hydraulic conductivity, debris flow, check dams

CLC Number: 

  • TV 144

[1] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[2] FAN Ri-dong, , DU Yan-jun, , LIU Song-yu, , YANG Yu-ling, . Experimental study on chemical compatibility of sand-bentonite backfills for vertical cutoff barrier permeated with inorganic salt solutions [J]. Rock and Soil Mechanics, 2020, 41(3): 736-746.
[3] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[4] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[5] XU Hao-qing, ZHOU Ai-zhao, JIANG Peng-ming, LIU Shun-qing, SONG Miao-miao, CHEN Liang, . Study on bentonite content of different sand-bentonite vertical cutoff wall backfill materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 424-430.
[6] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[7] WANG Dong-po, CHEN Zheng, HE Si-ming, CHEN Ke-jian, LIU Fa-ming, LI Ming-qing, . Physical model experiments of dynamic interaction between debris flow and bridge pier model [J]. Rock and Soil Mechanics, 2019, 40(9): 3363-3372.
[8] FAN Ri-dong, LIU Song-yu, DU Yan-jun, . Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites [J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996.
[9] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[10] WANG You-biao, YAO Chang-rong, LIU Sai-zhi, LI Ya-dong, ZHANG Xun. Experimental study of debris flow impact forces on bridge piers [J]. Rock and Soil Mechanics, 2019, 40(2): 616-623.
[11] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
[12] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[13] LI Wei, XU Qiang, WU Li-zhou, LI Si-qi, . Influence of seepage forms of confined water on translational landslide [J]. , 2018, 39(4): 1401-1410.
[14] TANG Ran, XU Qiang, WU Bing, FAN Xuan-mei,. Method of sliding distance calculation for translational landslides [J]. , 2018, 39(3): 1009-1019.
[15] WANG Bao, DONG Xing-ling,. Hydraulic conductivity of mine leachate through geosynthetic clay liners under different effective stresses [J]. , 2017, 38(5): 1350-1358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!