›› 2012, Vol. 33 ›› Issue (11): 3359-3366.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of method and effect of high-position drainage of tunnel in water-rich fault

ZHANG Zhi-qiang,HE Ben-guo,WANG Zhi-jie,LI Hua-yun,LIU Yun-jun   

  1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2012-08-10 Online:2012-11-12 Published:2012-11-14

Abstract: The construction of Daxiang mountain tunnel in water-rich fault has great risks of causing water bursting and mud gushing easily. High-position drainage can reduce water pressure ahead of working face effectively. By using field test and numerical simulation, under different water-level conditions, the interrelation between method of high-position drainage and stability of tunnel is studied; and the optimal plan of arrangement of high-position drainage pipes is put forward. Studies show that: maximum water pressure of Daxiang mountain tunnel in fault is up to 1.98 MPa. The tunnel can be constructed securely after drainage and the maximum water head is only 10 meters. Therefore, prevention of water bursting is mainly concentrated in the period of tunnel face excavation. The drain volume of drain pipes at vault is maximum. The closer drain pipes and arch foot are, the more poor drainage capacity is; and the density of drain pipes at vault should be higher than that at arch foot. In actual construction, for faster to reach drain effect, drain pipes at vault should be first to arranged, then at arch foot. Interrelation between number of drain pipes, drain volume and extrusion deformation of tunnel face is studied. According to economy and effect of hydrophobic reinforcement, reasonable drainage scheme is put forward.

Key words: fault, water-rich, mountain tunnel, high-position drainage, working face stability

CLC Number: 

  • U 455
[1] CHEN Wu, ZHANG Guo-hua, WANG Hao, ZHONG Guo-qiang, WANG Cheng-tang, . Evaluation of possibility of tunnel collapse by drilling and blasting method based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(S1): 319-328.
[2] CHEN Wu, ZHANG Guo-hua, WANG Hao, CHEN Li-biao, . Risk assessment of mountain tunnel collapse based on rough set and conditional information entropy [J]. Rock and Soil Mechanics, 2019, 40(9): 3549-3558.
[3] ZHAO Mi, OUYANG Wen-long, HUANG Jing-qi, DU Xiu-li, ZHAO Xu, . Analysis of axis dynamic response of rock tunnels through fault fracture zone under P waves of earthquake [J]. Rock and Soil Mechanics, 2019, 40(9): 3645-3655.
[4] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[5] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[6] ZHONG Guo-qiang, WANG Hao, KONG Li, WANG Cheng-tang, . Evaluation of the possibility of foundation pit collapse with " diaphragm wall+ support" based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(4): 1569-1576.
[7] GAO Cheng-lu, LI Shu-cai, LIN Chun-jin, LI Li-ping, ZHOU Zong-qing, LIU Cong, SUN Shang-qu, . Development and application of model test system for water leakage disease in tunnel lining [J]. Rock and Soil Mechanics, 2019, 40(4): 1614-1622.
[8] CAI Qi-peng, GAN Gang-lu, NG C. W. W., CHEN Xing-xin, XIAO Zhao-yun, . Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting [J]. Rock and Soil Mechanics, 2019, 40(3): 1067-1075.
[9] LIU Yun, LAI Jie, XIN Jian-ping, LI Xiu-di, XING Rong-jun, . Comparison test of dynamic response characteristics of the tunnels through fault [J]. Rock and Soil Mechanics, 2019, 40(12): 4693-4702.
[10] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[11] LU Zhi-guo, JU Wen-jun, ZHAO Yi-xin, WANG Hao, ZHENG Jian-wei, LIU Ai-qing, . Analysis of the mining induced stress rotation influence on fault stability [J]. Rock and Soil Mechanics, 2019, 40(11): 4459-4466.
[12] WANG Pu, WANG Chen-hu, YANG Ru-hua, HOU Zhen-yang, WANG Hong, . Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution [J]. Rock and Soil Mechanics, 2019, 40(11): 4486-4496.
[13] WANG Peng-fei, LI Chang-hong, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone [J]. Rock and Soil Mechanics, 2018, 39(S2): 53-61.
[14] CAI Qi-peng, CHARLES W W Ng , HU Ping, CHEN Xing-xin, LI Sheng-cai,. Centrifuge experimental study of of dynamic responses of clay stratum overlying a strike-slip fault [J]. , 2018, 39(7): 2424-2432.
[15] GUO Liang, HU Xie-wen, LI Xiao-zhao, WU Xi-yong, WU Li-zhou, LI Yu, LUO Gang, MA Hong-sheng,. Experimental study of hydraulic characteristics of undisturbed fractured rock in granite fault zone [J]. , 2018, 39(11): 3937-3948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .