›› 2013, Vol. 34 ›› Issue (1): 80-84.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical and engineering characteristics of capillary water of silty soils

WU Shi-yu1,YU Jin-huang1, 2   

  1. 1. Anhui and Huaihe River Water Resources Research Institute, Bengbu, Anhui 233000, China; 2. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2011-10-08 Online:2013-01-10 Published:2013-01-10

Abstract: This paper deals with the influence of capillary water on the strength and deformation of soils, and on the seepage flow state of levees and dams. Silty soils possess both higher water head and higher permeability, water pressure transmitting rapidly. So that the influence of capillary water in the engineering with silty soils is obvious. The principal research results are: ①According to the comparison tests of unconfined compression strength with samples immersed in the water or not, and with theoretical analysis, it has been demonstrated the capillary water head results the further consolidation and strength increasing of the soil. The strength increasing values of the tests are the same as the values of theoretical calculation. ②Analyzing and calculating the decreasing process of capillary water tension accompanied by soil expansion in silty surface strata on heavy rain condition. ③Using electric analog test and sand model test, the influence of capillary water on the seepage flow state of levees and dams is studied. The capillary water results the increasing of the seepage flow quantity and the height of release point. ④Two new empirical formulae of capillary water head and permeability coefficient of sand and silty soils are presented. The research results can be applied to the engineering of foundation foundation pits, levees and dams with silty soils.

Key words: capillary water, silty soils, strength, consolidation, seepage

CLC Number: 

  • TU 411
[1] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[2] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[3] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[4] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[5] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[6] ZUO Yong-zhen, ZHAO Na. Experimental study on the seepage filter protection of core-wall material slurry under extreme conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 520-526.
[7] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[8] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[9] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[10] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[11] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[12] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[13] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[14] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[15] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] GU Shuan-cheng, SU Pei-li, WANG Jian-wen, WANG Hong-ke. Study of peculiarity of burnt rock mass and its grouting spreading behavior[J]. , 2009, 30(S2): 60 -63 .
[7] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[8] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[9] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[10] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .