›› 2013, Vol. 34 ›› Issue (10): 2898-2904.

• Geotechnical Engineering • Previous Articles     Next Articles

Research on sliding mechanism of Dahan slope in Youyang county under rainfall condition

LIU Xin-rong, ZHANG Liang, YU Yu, LIU Kun   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing 400045, China
  • Received:2012-11-27 Online:2013-10-09 Published:2013-10-18

Abstract: Taking a certain thick accumulation landslide for example, and based on the theory of unsaturated soil mechanics, this paper uses the finite-element method to calculate and analyze the slope seepage and dynamic stability under the condition of rainfall infiltration and studies the time effect of water movement in the slope mass on the slope stability. The results show that the loose structure of the slope accumulation body, the poor soil strength, the large gradient at the slope front edge and excavation at the slope toe have provided a convenient condition for landslide formation. Under heavy rainfall, the deformation instability firstly occurred near the slope toe, and then pulled the slope rear edge and caused the tensile fissures. The rainwater infiltrated along the slope surface, formed the seepage field in the slope body and weakened the rock-soil mass parameters. Meanwhile, the saturated runoffs formed on the slope surface generated the downward seepage force on the slope front edge, and promoted the slope front edge to slide and triggered the slippage of the hierarchical slopes. In the initial stage of the heavy rainfall, the safety factor of the landslide mass reduced rapidly, which easily caused the landslide. This study reveals that the rainfall infiltration induced the sliding mechanism of the slope with thick accumulation horizon, based on which, the paper recommends to take the measures of water cut-off, drainage and water plugging to drain off the water, and to set the rock-socketed anchor cable anti-slide pile and taking the measures of slope cutting and cleanup earthwork to control the slope. Good effect results have been obtained through the stability calculation.

Key words: unsaturation, weakening, rainfall, accumulation body, mechanism

CLC Number: 

  • TU 457
[1] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[2] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[3] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[4] SHI Li, HU Dong-dong, CAI Yuan-qiang, PAN Xiao-dong, SUN Hong-lei, . Preliminary study of real-time pore water pressure response and reinforcement mechanism of air-booster vacuum preloading treated dredged slurry [J]. Rock and Soil Mechanics, 2020, 41(1): 185-193.
[5] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[6] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[7] HE Fa-guo, LÜ Ran, SU Hua-zhong, ZHOU Jin, ZHANG Jing-ke, WANG Nan, . Durability test and reinforced mechanism on adding SH materials into soil of archaeological sites [J]. Rock and Soil Mechanics, 2019, 40(S1): 297-307.
[8] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[9] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[10] ZHU Lei, HUANG Run-qiu, CHEN Guo-qing, YAN Ming, . Mechanical model and evolution of fracture system with a gentle dip angle in rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 53-62.
[11] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[12] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[13] DENG Hong-wei, LUO Yi-lin, DENG Jun-ren, WU Li-jie, ZHANG Ya-nan, PENG Shu-quan. Experimental study of improving impermeability and strength of fractured rock by microbial induced carbonate precipitation [J]. Rock and Soil Mechanics, 2019, 40(9): 3542-3548.
[14] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[15] DU Chang-cheng, ZHU Yan-bo, MIAO Shuai-sheng, GAO Ming-ming, ZHU Jun-hua, ZHAO Fa-suo. The evolution of cracks in the dewatering shrinkage process of hipparion red soil [J]. Rock and Soil Mechanics, 2019, 40(8): 3019-3027.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[8] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[9] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[10] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .