›› 2013, Vol. 34 ›› Issue (10): 2979-2983.

• Numerical Analysis • Previous Articles     Next Articles

Calculation and analysis of unlimited passive earth pressure of cohesionless soil in different movement modes

YANG Tai-hua1, GONG Jian-wu1, TANG Bin1, YU Xiao1, HE Huai-jian2   

  1. 1. College of Urban Construct, Wuhan University of Science and Technology, Wuhan 430070, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2013-03-31 Online:2013-10-09 Published:2013-10-18

Abstract: Assuming the internal friction angles of backfills and their displacements are in nonlinear, to adopt the calculation model that was put forward by the author, combined with the indoor mode experiment, the authors calculate and analyze the passive earth pressure acted on the retaining wall in different movement modes: translation (i.e. Mode T), rotation around a certain point under the wall-bottom (i.e. Mode RBT) and rotation around some point above the wall top (i.e. Mode RTT). The analysis results show that the calculated values and the test values can agree with each other very well in the three ways of the distribution of soil pressure strength along the wall height, the values of the total earth pressure and the location of the action point of the total earth pressure. It is shown that: (1) It is feasible to use the calculation model to calculate the passive earth pressure in different movement modes. (2) For the agreement degree between the calculated values and the test values of the soil pressure strength distribution, it is the best in Mode RBT; next is Mode T; it is relatively the worst in Mode RTT. (3) For the required displacement to reach the Rankine's passive earth pressure force, it is the minimum in Mode T; next is in Mode RTT; it is relatively the maximum in Mode RBT. (4) For the location of the action point of the total earth pressure, in Mode T, those are all at the 1/3 wall’s height from the wall bottom; in Mode RBT, those are all over the 1/3 wall’s height; in Mode RTT, those are all below the 1/3 wall’s height; and in RBT and RTT mode locations of the action point all gradually trend to the 1/3 height place from the wall bottom with the value of n (the ratio of the distance from rotation point to retaining wall proximal endpoint to wall's height) increasing gradually. These views are completely consistent with the fact.

Key words: displacement effect, movement mode, unlimited state, earth pressure

CLC Number: 

  • TU 432
[1] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[2] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[3] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[4] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[5] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[6] ZHU Jun-gao, JIANG Ming-jie, LU Yang-yang, JI En-yue, LUO Xue-hao, . Experimental study on influence of stress state on at-rest earth pressure coefficient for coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(3): 827-833.
[7] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[8] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[9] LIANG Bo, LI Yan-jun, LING Xue-peng, ZHAO Ning-yu, ZHANG Qing-song, . Determination of earth pressure by miniature earth pressure cell in centrifugal model test [J]. Rock and Soil Mechanics, 2019, 40(2): 818-826.
[10] ZHANG Ye-qin, CHEN Bao-guo, MENG Qing-da, XU Xin, . Stress mechanism and foundation contact pressure of high fill culvert under load reduction condition [J]. Rock and Soil Mechanics, 2019, 40(12): 4813-4818.
[11] TIAN Yu, YAO Yang-ping, LU De-chun, DU Xiu-li, . Cross-anisotropic Mohr-Coulomb criterion and formula of passive earth pressure based on modified stress method [J]. Rock and Soil Mechanics, 2019, 40(10): 3945-3950.
[12] JIANG Cheng-xuan, CHEN Bao-guo, MAO Xin-ying, SHE Ming-kang. Stress characteristics of high fill load-shedding culvert on flexible foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 275-280.
[13] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[14] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[15] YAO Ai-jun, ZHANG Jian-tao, GUO Hai-feng, GUO Yan-fei. Influence of unloading-loading of foundation on shield tunnel underneath [J]. , 2018, 39(7): 2318-2326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .