›› 2013, Vol. 34 ›› Issue (10): 3003-3010.

• Numerical Analysis • Previous Articles     Next Articles

Numerical model for nonlinear large strain consolidation of deposited sediment

GUO Shuai-jie1, 2, WANG Bao-tian1, 2, ZHANG Fu-hai1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China
  • Received:2013-03-24 Online:2013-10-09 Published:2013-10-18

Abstract: Large strain consolidation theory is applied to calculate deposited cohesive sediment weight deposition and consolidation for the significant nonlinear large strain characteristics. Based on soft soil one-dimensional general large strain consolidation theory and the application of quasi-power functional consolidation constitutive relationships between effective stress, permeability and void ratio, nonlinear large strain consolidation governing equation can be built up according to Darcy law, effective stress principle as well as the soil continuous equation. By the coupling relationship of pore water seepage, element deformation and weight consolidation settlement, a full cohesive sediment weight consolidation numerical model is developed for the nonlinear large strain characteristics. With the fact that deposited sediment weight is as the consolidation loading, the new developed model assumes the deposited sediment layer is homogenous, and the consolidation settlement along with the pore water seepage only occurs in vertical direction, and then the sediment consolidation process can be seen as one dimensional weight consolidation. Moreover, nonlinear quasi-power consolidation constitutive relationship parameters are determined by the cohesive sediment settlement column experiment. Consolidation elements are applied to evaluate the effective stress, excessive pore pressure of different depths, and deposited sediment consolidation settlement is determined by the dissipation of excessive pore pressure in time scale. Numerical model performance shows that there is a clear adjustment process for the relationship of deposited layer effective stress and the void ratio according to the quasi-power functional constitutive relationship in the initial stage. An approximate 20% error between stress and strain consolidation degree means that deposited sediment consolidation settlement develops faster than excessive pore pressure dissipation, which also proves the asynchronous coupling relationship of consolidation deformation and excessive pore pressure dissipation in large strain consolidation. According to the numerical model performances in cohesive sediment consolidation with settlement column experiment, the new developed model outputs show a well agreement with the measured one.

Key words: large strain consolidation, settlement, deposited sediment, numerical model, settlement column experiment

CLC Number: 

  • TU 441+.4
[1] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[2] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[3] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[4] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[5] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[6] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[7] DU Wen, WANG Yong-hong, LI Li, ZHU Lian-chen, ZHU Hao-tian, WANG You-qi, . Case study on double-deck subway station undercrossing and analysis of filed monitoring about this case [J]. Rock and Soil Mechanics, 2019, 40(7): 2765-2773.
[8] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[9] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[10] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[11] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[12] LIU Cheng-yu, ZHANG Xiang, CHENG Kai, CHEN Bo-wen, . Experimental study of settlement caused by water and sand inrush in underground engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 843-851.
[13] CAI Qi-peng, GAN Gang-lu, NG C. W. W., CHEN Xing-xin, XIAO Zhao-yun, . Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting [J]. Rock and Soil Mechanics, 2019, 40(3): 1067-1075.
[14] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[15] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .