›› 2013, Vol. 34 ›› Issue (3): 842-848.

• Geotechnical Engineering • Previous Articles     Next Articles

Comparative study of arrangement mode of pressure relief anchor cable box beam support system in deep thick top coal roadway

WANG Qi1, 2,LI Shu-cai1,LI Wei-teng1,WANG De-chao1,HUANG Fu-chang2, JIANG Bei1,LI Zhi1,WANG Hong-tao1   

  1. 1. Research Center of Geotechnical and Structural Engineering , Shandong University, Jinan 250061, China; 2. Post-Doctoral Scientific Research Station, Yankuang Group Company Limited, Zoucheng, Shandong 273500, China
  • Received:2012-03-12 Online:2013-03-11 Published:2013-03-20

Abstract: According to the deformation characteristic of surrounding rock in deep thick top coal roadway, guided by the support idea of controlling at first, pressure yielding behind and then resistance, four schemes of pressure relief anchor cable box beam support system are designed, of which beam arrangement mode are lateral beam, longitudinal single beam, longitudinal double beams and longitudinal-lateral combined beam respectively. The results of numerical test show that, among the four schemes, longitudinal-lateral combined beam scheme is best in surrounding rock controlling; lateral beam scheme is relatively worst. The four schemes are applied to field test. The monitoring results show that the surrounding rock deformation of test section with longitudinal-lateral combined beam scheme is least; the sides deformation is 120 mm and the roof deformation is 90 mm. Meanwhile, bolts and anchor cables have the largest supporting reaction in this scheme. The force measuring anchor cable box beams are designed and made. The monitoring results show that box beam stress conditions are reasonable and coordinate, material is used fully. In the four schemes, supporting and protecting components reaction corresponding with the effect of the roadway control, and the effect of anchor cable yielding ring is obvious. Mechanisms of support systems are analyzed. Under the geological conditions of deep thick top coal roadway, longitudinal-lateral combined beam and longitudinal single beam schemes of pressure relief anchor cable box beam support system are better for controlling surrouding rock deformation in a cost-effective way; and the supporting demand is satisfied.

Key words: box supporting beam, pressure relief, support system, arrangement mode, numerical test, field test

CLC Number: 

  • TD 313
[1] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[2] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[3] WU Shuang-shuang, HU Xin-li, GONG Hui, ZHOU Chang, XUChu, WANG Qiang, YING Chun-ye, . Shear properties of pile-soil of three modes of bored piles in field tests [J]. Rock and Soil Mechanics, 2019, 40(7): 2838-2846.
[4] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[5] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[6] WANG Qin-ke, MA Jian-lin, HU Zhong-bo, WANG Bin, . Field tests on bearing behaviors of uplift piles in soft rock with shallow overburden [J]. Rock and Soil Mechanics, 2019, 40(4): 1498-1506.
[7] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[8] REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, LIU Han-long, . Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile [J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864.
[9] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[10] YUAN Liang, LIU Ye-jiao, TIAN Zhi-chao, TANG Chun-an, XUE Jun-hua, DUAN Chang-rui, ZHANG Han, . Numerical test and application of gas pre-drainage in an extra-thick seam by using ground vertical boreholes [J]. Rock and Soil Mechanics, 2019, 40(1): 370-378.
[11] CUI Guang-yao, QI Jia-suo, WANG Ming-sheng, . Field test study on large deformation control of surrounding rock of cleaved basalt tunnel [J]. Rock and Soil Mechanics, 2018, 39(S2): 231-237.
[12] WANG Bing-long, MEI Zhen, XIAO Jun-hua. Experimental study of subgrade reinforcement and diseases treatment by geocell [J]. , 2018, 39(S1): 325-332.
[13] YU Hao-jun, PENG She-qin, ZHAO Qi-hua,. Research on response of laterally loaded pile in gravel soil sloping ground [J]. , 2018, 39(7): 2537-2545.
[14] WANG Xiang-ying, CHEN Yu-min, JIANG Qiang, LIU Han-long, . Soil pressures of the anti-liquefaction rigid-drainage pile during pile driving [J]. , 2018, 39(6): 2184-2192.
[15] LI Zi-qiang, XU Tian-yuan, WU Qiu-jun, YU Li, WANG Ming-nian, WANG Zi-jian,. Field experimental study of basement structural dynamic properties of the heavy-haul railway tunnel in broken surrounding rock [J]. , 2018, 39(3): 949-956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIE Xing-hua, WANG Guo-qing. A study of anti-seepage wall depth in thick overburden dam base[J]. , 2009, 30(9): 2708 -2712 .
[2] CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, QIN Bing, WEI Xue-wen. Research on meso-structures and their evolution laws of expansive soil and loess[J]. , 2009, 30(1): 1 -11 .
[3] XIA Li-nong, LEI Ming, NIE Chong-jun. Field test of influences of load at pile top on negative skin friction behaviors[J]. , 2009, 30(3): 664 -668 .
[4] PAN Peng-zhi, FENG Xia-ting, ZHOU Hui. Failure evolution processes of brittle rocks using 3D cellular automaton method[J]. , 2009, 30(5): 1471 -1476 .
[5] YE Wei-min, HUANG Wei, CHEN Bao, YU Chen1, WANG Ju. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. , 2009, 30(7): 1899 -1903 .
[6] WANG Ji-liang, CHEN Jian-ping, YANG Jing, QUE Jin-sheng. Method of distance discriminant analysis for determination of classification of rockburst[J]. , 2009, 30(7): 2203 -2208 .
[7] CHEN Ming,LU Wen-bo,ZHOU Chuang-bing,LUO Yi. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation[J]. , 2009, 30(8): 2254 -2258 .
[8] HU Yun-shi, SU Hui, CHENG Yi-chong, AI Zhi-yong. State space solution to three-dimensional consolidation of layered rock with compressible constituents[J]. , 2011, 32(S1): 176 -180 .
[9] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[10] CHEN Jian-gong ,ZHOU Tao-tao ,ZHANG Yong-xing. Shock failure mechanism of zonal disintegration within surrounding rock in deep chamber[J]. , 2011, 32(9): 2629 -2634 .