›› 2013, Vol. 34 ›› Issue (4): 1109-1115.

• Geotechnical Engineering • Previous Articles     Next Articles

Field experimental study of lateral load capacity of filling pile enhanced by soil-cement pile

HUANG Yin-bing1, 2, ZHAO Heng-bo3, GU Chang-cun1, 2, SHAO Jie1, 2   

  1. 1. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 2. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210098, China; 3. Qindao College, Qingdao Technological University, Qingdao, Shandong 266106, China
  • Received:2012-02-08 Online:2013-04-10 Published:2013-04-16

Abstract: Based on the project in the tidal gate of Sanyang port in silt foundation, a field experimental study was conducted on lateral load capacity, in order to study the effect of filling pile enhanced by the soil-cement pile. For measuring the pile stress distribution of the body in the horizontal load and getting the distribution of bending moment, reinforcement meter were welded to the steel cage at different elevations when the filling piles were being driven; Soil pressure cells were buried on both sides of pile; in order to get the distribution of the soil pressure while the lateral load test was under way. The results show that, filling pile enhanced by soil-cement piles can control the development of horizontal displacement and increase the level of pile bearing capacity. Distribution of the bending moment value and the soil pressure of the soil around the pile are presented the developing trend of increasing initially and decreasing afterwards, and are mainly concentrated in the upper part of the pile and soil, and go to the maximum value of about 3m below the soil surface. Soil-cement pile can effectively reduce the value of bending moment of the pile, and can also weaken the emergence of anti-bottom. The soil around pile can provide greater soil pressure when the filling pile is surrounded by the soil-cement pile. The lateral load capacity of filling pile is impacted greatly by the upper level of soil, that is, raising the upper soil physico-mechanical properties can increase the level of lateral bearing capacity.

Key words: lateral load, filling piles, cement-soil pile, field test

CLC Number: 

  • TU 472
[1] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[2] ZHU Ming-xing, DAI Guo-liang, GONG Wei-ming, WAN Zhi-hui, LU Hong-qian, . Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607.
[3] WU Shuang-shuang, HU Xin-li, GONG Hui, ZHOU Chang, XUChu, WANG Qiang, YING Chun-ye, . Shear properties of pile-soil of three modes of bored piles in field tests [J]. Rock and Soil Mechanics, 2019, 40(7): 2838-2846.
[4] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[5] WANG Qin-ke, MA Jian-lin, HU Zhong-bo, WANG Bin, . Field tests on bearing behaviors of uplift piles in soft rock with shallow overburden [J]. Rock and Soil Mechanics, 2019, 40(4): 1498-1506.
[6] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[7] REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, LIU Han-long, . Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile [J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864.
[8] CUI Guang-yao, QI Jia-suo, WANG Ming-sheng, . Field test study on large deformation control of surrounding rock of cleaved basalt tunnel [J]. Rock and Soil Mechanics, 2018, 39(S2): 231-237.
[9] WANG Bing-long, MEI Zhen, XIAO Jun-hua. Experimental study of subgrade reinforcement and diseases treatment by geocell [J]. , 2018, 39(S1): 325-332.
[10] YU Hao-jun, PENG She-qin, ZHAO Qi-hua,. Research on response of laterally loaded pile in gravel soil sloping ground [J]. , 2018, 39(7): 2537-2545.
[11] WANG Xiang-ying, CHEN Yu-min, JIANG Qiang, LIU Han-long, . Soil pressures of the anti-liquefaction rigid-drainage pile during pile driving [J]. , 2018, 39(6): 2184-2192.
[12] LI Hong-jiang, TONG Li-yuan, LIU Song-yu, BAO Hong-yan, YANG Tao, . Parameter sensitivity of horizontal bearing capacity of large diameter and super-long bored pile [J]. , 2018, 39(5): 1825-1833.
[13] LI Zi-qiang, XU Tian-yuan, WU Qiu-jun, YU Li, WANG Ming-nian, WANG Zi-jian,. Field experimental study of basement structural dynamic properties of the heavy-haul railway tunnel in broken surrounding rock [J]. , 2018, 39(3): 949-956.
[14] XIE Tao, LUO Qiang, ZHOU Cheng, ZHANG Liang, JIANG Liang-wei, . Mechanical response of shoulder sheet-pile wall under strictly restricted deformation condition in steep ground along a high-speed railway [J]. , 2018, 39(1): 45-52.
[15] LI Shu-cai, CHEN Hong-bin, ZHANG Chong, GONG Ying-jie, LI Hui-liang, DING Wan-tao, WANG Qi,. Research on effect of advanced support in silty clay tunnel [J]. , 2017, 38(S2): 287-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[2] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[3] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[4] LIU Wei-zheng,SHI Ming-lei,MIAO Lin-chang. Analysis of compressibility of structural soils based on disturbed state concept[J]. , 2010, 31(11): 3475 -3480 .
[5] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[6] WEI Xin-jiang,GUO Zhi-wei,WEI Gang,ZHANG Shi-min. Study of accident mechanism of shield launching considering seepage[J]. , 2011, 32(1): 106 -110 .
[7] FENG Xue-min , CHEN Sheng-hong , LI Wen-gang. Research on unloading relaxation criterion of high rocky slope excavation and its engineering application[J]. , 2009, 30(S2): 452 -456 .
[8] FAN Heng-hui ,GAO Jian-en ,WU Pu-te ,LOU Zong-ke. Analysis of influence factors for solidified soil strength based on change of physicochemical properties of loess[J]. , 2011, 32(7): 1996 -2000 .
[9] LI Jian ,TAN Zhong-sheng ,YU Yu ,NI Lu-su. Research on construction procedure for shallow large-span tunnel undercrossing highway[J]. , 2011, 32(9): 2803 -2809 .
[10] YANG Feng-xue ,ZHANG Xi-fa ,LENG Yi-fei ,ZHAO Yi-min. Empirical method for determining thawing volume compression coefficient of frozen soil[J]. , 2011, 32(11): 3432 -3436 .