›› 2013, Vol. 34 ›› Issue (7): 2031-2035.

• Geotechnical Engineering • Previous Articles     Next Articles

Arching effect analysis of core wall in Pubugou dam

LIN Jiang1,HU Wan-yu1,MENG Fan-li2,DENG Jian-hui1,CHEN Jia-wei1   

  1. 1. State Key Laboratory of Hydraulics and Mountain River Development and Protection, College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China; 2. HydroChina Chengdu Engineering Corporation, Chengdu 610072, China
  • Received:2012-09-07 Online:2013-07-10 Published:2013-07-15

Abstract: Based on the previous definitions of arching effect coefficient, the formula of arching effect coefficient is improved. It is suggested that the arching effect coefficient should be the ratio of measured soil pressure and the sum of overlaying soil pressure and pore water pressure. Combining with the monitoring data of Pubugou dam, the arching effect of core wall is calculated by the improved formula of arch effect coefficient; and dynamical analysis of arching effect is made. Construction technology is the main factor affecting the arching effect coefficient of core wall during the construction. The arching effect coefficient is larger when the filled soil is 0-20 m above the instruments; and decreases with the rising of filled soil. The stress distribution of dam during construction plays an important role in initial water storage. During the impoundment, the arching effect coefficient of upstream side of the core wall shows inverse correlation with water level variation. The arching effect coefficient of upstream side is larger than that of downstream side at the same elevation and 0+001 m. The arching effect coefficient at 0+001 m shows positive correlation with water level variation, where gets the smallest arching effect coefficient. The arching effect coefficient of downstream side of core wall shows positive correlation with water level variation. The arching effect coefficient is larger than 100% on the contact surface between core wall and bed rock. There are three reasons for the above laws, such as wetting, seepage and hydraulic fracture; and the combined effect of the three results in stress variation in core wall.

Key words: earth-rock dam, arching effect coefficient, core wall, hydraulic fracture

CLC Number: 

  • TV 641.4
[1] ZUO Yong-zhen, ZHAO Na. Experimental study on the seepage filter protection of core-wall material slurry under extreme conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 520-526.
[2] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[3] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[4] ZHENG An-xing, LUO Xian-qi,. An extended finite element method for modeling hydraulic fracturing in perilous rock [J]. , 2018, 39(9): 3461-3468.
[5] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Study on hydraulic fracture of gravity dam using the numerical manifold method [J]. , 2018, 39(8): 3055-3060.
[6] LIU Yue-dong, LIN Jian, FENG Yan-jun, SI Lin-po,. Research on tensile strength of rock based on hydraulic fracturing method [J]. , 2018, 39(5): 1781-1788.
[7] XIA Lei, ZENG Ya-wu,. Stress shadow effect of alternative fracturing based on numerical simulation of PFC2D [J]. , 2018, 39(11): 4269-4277.
[8] GUO Wan-li, ZHU Jun-gao, YU Ting, JIN Wei,. Application of gradation equation for coarse-grained soil [J]. , 2018, 39(10): 3661-3667.
[9] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Application of enriched numerical manifold method to hydraulic fracture [J]. , 2018, 39(10): 3875-3881.
[10] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[11] MA Geng, ZHANG Fan, LIU Xiao, FENG Dan, ZHANG Peng-wei,. Experimental study of impact of crustal stress on fracture pressure and hydraulic fracture [J]. , 2016, 37(S2): 216-222.
[12] LI Ming, GUO Pei-jun, LI Xin, LIANG Li,. Modelling method of heterogeneous rock material based on level set method and hydraulic fracture propagation features [J]. , 2016, 37(12): 3591-3597.
[13] LI Ming , GUO Pei-jun , LIANG Li , LI Xin,. Hydraulic fracturing characteristics of heterogeneous rock with hard inclusion distributed [J]. , 2016, 37(11): 3130-3136.
[14] SHI Lu-yang , LI Jian , XU Xiao-rui , YU Tian-tang,. Influence of hydraulic fracturing on natural fracture in rock mass [J]. , 2016, 37(10): 3003-3010.
[15] YAN Shu-wang , LI Jia , JIA Zhao-lin , SUN Li-qiang , . Analysis and engineering case of super-long pile refused hammer in offshore oil platform [J]. , 2015, 36(S2): 559-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .