›› 2013, Vol. 34 ›› Issue (7): 2111-2118.

• Numerical Analysis • Previous Articles     Next Articles

Study of vibration-isolation efficiency of open trench in saturated ground by 2.5D finite element method

YUAN Wan1, 2,CAI Yuan-qiang1, 2, 3,SHI Li1, 2,CAO Zhi-gang1   

  1. 1. College of Architecture and Civil Engineering, Zhejiang University, Hangzhou 310058, China; 2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China; 3. College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • Received:2012-08-27 Online:2013-07-10 Published:2013-07-15

Abstract: Based on the U-W formula of governing equations of Biot’s theory for the saturated porous medium, the corresponding 2.5D finite element method (FEM) equations and the viscoelastic absorbing boundary are deduced by introducing Galerkin method and Fourier transform. The solution in wave-number domain can be obtained firstly from the built model for open trenches in the saturated ground; then the fast Fourier transform (FFT) is applied to gain the results in 3D space domain. For the moving loads, the vibration-isolation effects of open trenches in three saturated grounds (homogeneous saturated ground, layered saturated ground and saturated ground with upper layer being single-phase elastic medium) are investigated. It’s found that not only is the vibration-isolation efficiency of open trenches related to the trench depth, but also it’s affected by the interface properties and parameters varying of the layered soil media. The transmission and reflection of waves in different soil interfaces have great influences on the vibration-isolation effects of open trenches. Besides, the thickness of the upper single-phase elastic layer can greatly affect the vibration-isolation efficiency of open trenches in the saturated ground; as the thickness of the upper single-phase elastic layer becomes larger, the vibration-isolation efficiency of open trenches in the saturated ground gets improved.

Key words: moving load, 2.5D finite elements, saturated soils, open trenches, vibration-isolation effect

CLC Number: 

  • TU 442
[1] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[2] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[3] BAO Han-ying, CHEN Wen-hua, ZHANG Qian. Propagation of subway vertical vibration in layered soils based on thin layer method and moving coordinate system method [J]. , 2018, 39(9): 3277-3284.
[4] ZHOU Bao-chun, KONG Ling-wei, MA Quan-guo, LUO Zheng-tao, ZHANG Yan-jun,. Effects of moisture and density states on unsaturated shear strength of compacted expansive soil [J]. , 2017, 38(S1): 240-246.
[5] YUAN Zong-hao, CAI Yuan-qiang, YUAN Wan, XU Yuan-lei, CAO Zhi-gang, . Dynamic response of circular railway tunnel and track system in saturated soil under moving train loading [J]. , 2017, 38(4): 1003-1014.
[6] LI Shun-qun , JIA Hong-jing , WANG Xing-xing , GUI Chao,. Limitation and error analysis of axis translation technique for measuring and controlling matric suction [J]. , 2016, 37(11): 3089-3095.
[7] XU Chang-jie , XU Liang-ying , YANG Yuan-ye,. Effect of parameters of three-phase unsaturated soils on wave propagation [J]. , 2015, 36(S2): 340-344.
[8] XUE Fu-chun, ZHANG Jian-min, . Attenuations of acceleration spectra of high-speed railway embankment subjected to moving loads [J]. , 2015, 36(S1): 445-451.
[9] KONG Yu-fei, SONG Er-xiang. A method for estimating soil-water characteristic curve from grain-size distribution [J]. , 2015, 36(9): 2487-2493.
[10] ZHOU Feng-xi ,CAO Yong-chun ,ZHAO Wang-gang,. Analysis of dynamic response of inhomogeneous subgrade under moving loads [J]. , 2015, 36(7): 2027-2033.
[11] BAI Xiao-yu ,ZHANG Ming-yi ,YUAN Hai-yang,. Deformation analysis for the end-suspended piles in the combined soil-rock foundation pits under moving loadings [J]. , 2015, 36(4): 1167-1173.
[12] LIU Yan , WEI Chang-fu , FANG Qian , CHEN Pan,. Implicit integration algorithm of a hydro-mechanical coupling constitutive model for unsaturated soils [J]. , 2014, 299(2): 365-370.
[13] MA Tian-tian,WEI Chang-fu,CHEN Pan,LI Wen-tao. Hydro-mechanical coupling constitutive model of unsaturated soils considering effect of air entrapment [J]. , 2014, 35(12): 3415-3420.
[14] LI Hao-yu, QI Yue-qin, LIU Jin. Dynamic responses of a two-layer plate on viscoelastic half-space foundation under moving loads [J]. , 2013, 34(S1): 28-34.
[15] LIU Yan , WEI Chang-fu , ZHAO Cheng-gang , FANG Qian . A constitutive model of unsaturated soils with high saturation [J]. , 2013, 34(8): 2189-2194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[2] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[3] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[4] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[5] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[6] SHI Dan-da, ZHOU Jian, JIA Min-cai, YANG Yong-xiang. Back analysis of parameters and long-term settlement prediction of harbor soft ground considering its creep behavior[J]. , 2009, 30(3): 746 -750 .
[7] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[8] LI Jian ,TAN Zhong-sheng ,YU Yu ,NI Lu-su. Research on construction procedure for shallow large-span tunnel undercrossing highway[J]. , 2011, 32(9): 2803 -2809 .
[9] YING Hong-wei , ZHENG Bei-bei , XIE Xin-yu. Study of passive earth pressures against translating rigid retaining walls in narrow excavations[J]. , 2011, 32(12): 3755 -3762 .
[10] LI Nan , XU Hui , HU Bin. Shear creep characteristics of sandstone under dry and saturated states[J]. , 2012, 33(2): 439 -443 .