›› 2015, Vol. 36 ›› Issue (7): 2027-2033.doi: 10.16285/j.rsm.2015.07.026

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of dynamic response of inhomogeneous subgrade under moving loads

ZHOU Feng-xi1, 2,CAO Yong-chun1,ZHAO Wang-gang1   

  1. 1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2014-05-14 Online:2015-07-11 Published:2018-06-13

Abstract: Based on the theory of linear elastodynamics, and combined with the coordinate transformation, the dynamic governing equations for a half-plane inhomogeneous subgrade are developed. The dynamic response of a two-dimensional inhomogeneous subgrade subjected to moving loads is analyzed based on a semi-analytical method. Using Fourier series expansion, and assuming the series form of response function, the analytical expressions of various physical quantities are developed for the inhomogeneous subgrade subjected to moving loads, in which the shear modulus can arbitrarily change with depth. Assuming the shear modulus has an exponential distribution with the thickness, a parametric study is presented to illustrate the influence of the foundation soil inhomogeneity and load moving velocity as well as shear modulus at subgrade surface on the dynamical response of foundation soils. The calculated results are compared with the responses of a homogeneous subgrade, showing that the vertical displacement of soil decreases with the increase of the shear modulus at the surface of subgrade and the inhomogeneous gradient index, and increases with the increase of the load moving velocity. Under a moving load, the dynamic responses of inhomogeneous subgrade are significantly different from that of homogeneous subgrade.

Key words: inhomogeneous subgrade, moving loads, dynamic response, semi-analytical method, Fourier series

CLC Number: 

  • TU 435
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[4] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[5] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[6] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[7] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[8] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[9] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[10] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[11] CUI Qi, HOU Jian-guo, SONG Yi-le. Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station [J]. Rock and Soil Mechanics, 2019, 40(2): 809-817.
[12] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[13] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[14] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[15] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .