›› 2013, Vol. 34 ›› Issue (9): 2460-2467.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Reinforcement measures and deformation failure modes of subgrade on embedded reverse fault

ZHANG Jian-jing1,SI Chang-liang1,ZHAO Yong-jun2,LIU hui2,HOU Jia-qing1   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. Project Department of Yunnan Section, Yun-Gui Railway, Kunming 650000, China
  • Received:2012-07-03 Online:2013-09-11 Published:2013-09-13

Abstract: The experimental subgrade is used to model a high embankment in the Yunnan-Guizhou Railway, which has a bottom width of L=60 cm, top width of l=10 cm, and height of h=15 cm. The experiment models are used to study the effect of four ground stabilizing measures (called four groups) on responses of the high embankment under the action of a thrust fault ruptures. Group 1 is the case that no ground stabilizing measure is taken and is a basic test. The results from the other three groups are all compared with that from group 1. Group 2 is the case that a layer of geogrid is laid at the bottom of the embankment, Group 3 is that two layers of geogrids are laid at the middle and bottom of the embankment respectively, and Group 4 is that CFG pile is used to stabilize the ground and two layers of geogrids are laid at the bottom and middle of the embankment respectively. Several displacement gauges and dials are used to record embankment deformation. Deformation and failure modes by caused by different stabilization measures are analyzed. Results show that: (1) In the 4 models, embankment damage is mainly caused by the crack of 45° in embankment. (2) When fault displacement is equal to or less than 13.6% of the embankment height, the engineering measure with two layers of geogrids has the best efficiency for reducing damage; when the fault displacement is greater than 13.6% of the embankment height and less than or equal to 20.5% of the embankment height, the measure with both CFG piles and two layers of geogrids can achieve the best efficiency. (3) Due to part of energy absorbed by soil foundation, failure angle in the ground gradually reduces as engineering measure gradually strengthens, as a result embankment damage extent is reduced because the length affected increases. The conclusions in the paper have significance for engineering practice.

Key words: reverse fault, failure mode, high fill subgrade, reinforcement measures

CLC Number: 

  • TU 470
[1] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[2] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[3] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[4] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[5] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[6] XU Jiang, QU Jia-mei, LIU Yi-xin, PENG Shou-jian, WANG Wei, WU Shan-kang, . Influence of filling material on the behavior of joints under cyclic shear loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637.
[7] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[8] ZHOU Hui, SONG Ming, ZHANG Chuan-qing, LU Jing-jing, LIU Zhen-jiang, SHI Lin-ken, . Effect of confining pressure on mechanical properties of horizontal layered composite rock [J]. Rock and Soil Mechanics, 2019, 40(2): 465-473.
[9] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[10] CUI Kai, FENG Fei, CHEN Wen-wu, WANG Xiao-hai, CHENG Fu-qiang, . Study on the mechanical compatibility of fissure grouting slurry with quick lime and grouting technology optimization in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(12): 4627-4636.
[11] FENG Jun, WANG Yang, ZHANG Yu-feng, HUANG Lin, HE Chang-jiang, WU Hong-gang, . Experimental comparison of anchorage performance between basalt fiber and steel bars [J]. Rock and Soil Mechanics, 2019, 40(11): 4185-4193.
[12] JIANG Qiang-qiang, JIAO Yu-yong, SONG Liang, WANG Hao, XIE Bi-ting, . Experimental study on reservoir landslide under rainfall and water-level fluctuation [J]. Rock and Soil Mechanics, 2019, 40(11): 4361-4370.
[13] GUO Kong-ling, YANG Lei, SHENG Xiang-chao, MEI Jie, LI Bang-xiang, ZHANG Bo, YANG Wei-min, SONG Guang-xiao, . Fracture mechanical behavior and AE characteristics of rock-like material containing 3-D crack under hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2019, 40(11): 4380-4390.
[14] ZHAO Mi, ZHANG Shao-hua, ZHONG Zi-lan, HOU Ben-wei, DU Xiu-li. Robust geotechnical design of spread foundations [J]. Rock and Soil Mechanics, 2019, 40(11): 4506-4514.
[15] LEI Hua-yang, LIU Guang-xue, ZHOU Jun, . Bearing property and failure mode of double-layer soft clay grounds in a dredger fill site [J]. Rock and Soil Mechanics, 2019, 40(1): 260-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[2] ZHANG Yong-xing, LU Li, RAO Xiao-yu, LI Jian. Model test research on mechanical behavior of compression type rock bolt[J]. , 2010, 31(7): 2045 -2050 .
[3] HUANG Qiang-bing,PENG Jian-bing,DENG Ya-hong,FAN Wen. Design parameters of Xi’an metro line 2 tunnel passing through active ground fissure zones[J]. , 2010, 31(9): 2882 -2888 .
[4] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[5] WANG Zhen-hong,ZHU Yue-ming,WU Quan-huai,ZHANG Yu-hui. Thermal parameters of concrete by test and back analysis[J]. , 2009, 30(6): 1821 -1825 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[8] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .
[9] LIU Jun-xin ,CHEN Zhong-fu ,XU Wei-fang ,CHEN Gang . Experimental study of dynamic properties of compacted clay under different compaction degrees and water contents[J]. , 2012, 33(6): 1631 -1639 .
[10] WANG Yu ,JIA Zhi-gang ,LI Xiao ,WANG Can ,YU Hong-ming . Fuzzy random reliability analysis of slope based on fuzzy point estimate method[J]. , 2012, 33(6): 1795 -1800 .