›› 2013, Vol. 34 ›› Issue (9): 2672-2681.

• Numerical Analysis • Previous Articles     Next Articles

Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model

JIANG Ming-jing1, 2,HE Jie1, 2,ZHOU Ya-ping1, 2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2012-10-18 Online:2013-09-11 Published:2013-09-13

Abstract: First, the micro-bond contact model considering hydrate cementation thickness of the deep-sea methane hydrate soil proposed by Jiang et al. was applied to describe micro-bond contact mechanical properties of hydrate between methane hydrate soil particles. Second, the model is introduced into the discrete element method (DEM) by using C++ language to program it. Third, based on the selected hydrate saturation, the corresponding hydrate cementation size is obtained through actual adjustable calculation of two dimensional DEM simulation to revise the values of hydrate critical bond thickness, minimum bond thickness and bond width, then micro-bond parameters are determined. Finally, based on the parameters of methane hydrate, many biaxial tests with different hydrate saturations are carried out to simulate the mechanical properties of deep-sea methane hydrate soils. In addition, comparisons are made between triaxial experimental observations done by Masui et al. and numerical simulation from aspects of stress-strain, volumetric, dilatancy angle of methane hydrate soils. The results show that the macromechanical properties of deep-sea methane hydrate soils are reflected qualitatively by using hydrate micro bond model considering bond thickness; peak shear strength, cohesive force and dilatancy angle of deep-sea energy soil increase with increasing content of hydrate; but the influence of hydrate saturation on internal friction angle is uncertain; peak shear strength, residual shear strength and volume shrinkage increase with increasing effective confining pressure while dilatancy angle decreases.

Key words: deep-sea methane hydrate-bearing soil, micro-bond thickness model, distinct element method

CLC Number: 

  • TU 411
[1] LIU Sun, JIANG Ming-jing, FU Chang, ZHU Jun-gao,. Distinct element analysis of cone penetration tests in structured sand ground [J]. , 2018, 39(3): 933-942.
[2] LI Lei, JIANG Ming-jing, ZHANG Fu-guang, . Quantitative simulation of triaxial test considering residual strength on deep rock using DEM and parameter analysis [J]. , 2018, 39(3): 1082-1090.
[3] ZHANG Fu-guang, JIANG Ming-jing, . Distinct element analysis of plane strain test on soil unloading around a foundation pit [J]. , 2018, 39(1): 339-348.
[4] SHEN Hua-zhang, GUO Ming-wei, WANG Shui-lin, GE Xiu-run. Vector sum method for slope stability analysis based on discrete elements [J]. , 2016, 37(2): 592-600.
[5] HE Jie , JIANG Ming-jing , . Macro-micro mechanical property of pore-filling type methane hydrate-bearing sediment in true triaxial tests based on distinct element analysis [J]. , 2016, 37(10): 3026-3034.
[6] YANG Li-fu , CHANG Xiao-lin , ZHOU Wei , CHENG Yong-gang , MA Gang , . Deep anti-sliding stability analysis of gravity dam with multiple sliding planes based on distinct element method [J]. , 2015, 36(5): 1463-1470.
[7] JIANG Ming-jing , ZHANG Ning , SHEN Zhi-fu , CHEN He,. DEM analyses of crack propagation in flawed rock mass under uniaxial compression [J]. , 2015, 36(11): 3293-3300.
[8] JIANG Ming-jing, HE Jie, . A distinct element analysis of critical state passive earth pressure against a rigid wall using a rolling resistance contact model [J]. , 2015, 36(10): 2996-3006.
[9] JIANG Ming-jing , HE Jie , . Three-dimensional distinct element simulation of macro triaxial compressional strength characteristics of methane hydrate through uniaxial compressional test [J]. , 2014, 35(9): 2692-2701.
[10] ZHANG Yu-jun,XU Gang. 2D distinct element analyses of thermo-hydro-mechanical coupling effects for a drift with bolt-shotcrete supporting in a conceptual nuclear waste repository [J]. , 2013, 34(S1): 430-436.
[11] JIANG Ming-jing ,WANG Xin-xin . Numerical analysis of cone penetration tests under different gravity fields by distinct element method [J]. , 2013, 34(3): 863-873.
[12] JIANG Ming-jing , HE Jie , LIU Fang . Distinct element simulation of passive earth pressure against a translating rigid wall using a rolling resistance contact model [J]. , 2012, 33(9): 2788-2795.
[13] YAN Chao , JIANG Ming-jing , ZHANG Wang-cheng , SUN De-an . Investigations on uplift failure of pipe buried in cemented seabed using distinct element method [J]. , 2012, 33(9): 2822-2828.
[14] JIANG Ming-jing , ZHENG Min , WANG Chuang . Distinct element analysis of shear band of lunar soil in biaxial tests [J]. , 2012, 33(12): 3801-3809.
[15] JIANG Ming-jing , SUN Yu-gang. A DEM modelling of mechanical behaviour of artificially cemented sand [J]. , 2011, 32(6): 1849-1856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] ZHANG Yi-hu, ZHOU Huo-ming, WU Ai-qing. Post processing of discontinuity network modeling result[J]. , 2009, 30(9): 2855 -2861 .
[3] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[4] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[5] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[6] YANG Tian-hong, CHEN Shi-kuo, ZHU Wan-cheng, LIU Hong-lei. Coupled model of gas-solid in coal seams based on dynamic process of pressure relief and gas drainage[J]. , 2010, 31(7): 2247 -2252 .
[7] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[8] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[9] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[10] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .