›› 2013, Vol. 34 ›› Issue (S1): 35-40.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Test of rockburst in straight-wall-top-arch roadways(tunnels) and its splitting and shearing failure analysis

ZHANG Xiao-jun,WANG Dong,XIAO Chao,ZHENG Huai-chang   

  1. School of Resources and Environment,Shandong University of Technology,Zibo,Shandong 255049,China
  • Received:2013-04-18 Online:2013-08-30 Published:2014-06-09

Abstract: Aiming at the monitoring and test of rockburst, the uniaxial compression tests and acoustic monitoring of rockburst in straight-wall-top-arch roadways(tunnels) were carried out and on this basis rockburst splitting and shearing were discussed.The results show that the failure surface of surrounding rock is rough and showing thin splitting block and the whole sample is also showing a distinct splitting rockburst; wave velocity can reflect the rock damage evolution process; and wave velocity from constant to lessening can be used as the dot of critical damage for rockburst prediction which can be achieved by monitoring velocity variation; surrounding rock internal development and changes can be a very good grasp by monitoring the waveform, especially waveform sparse and periodic increase; combination of qualitative and quantitative monitoring by the comprehensive monitoring of sound velocity, waveform sparse and periodic increase can timely and accurately predict rockburst in order to protect personnel and equipment safety; comprehensive expression of splitting rockburst is developed by the stress intensity factor and the ratio of rock's compressive-tensile strength and the numerical value corresponding to rockburst intensity standard of stress intensity factor are developed; stress intensity factor criterion of splitting rockburst is between 0.27-0.80(R=10-30 ); shearing failure condition will be satisfied with the increase of stress intensity factor and the main failure form will develop in the direction of shearing failure.

Key words: straight-wall-top-arch roadways(tunnels), rockburst, uniaxial compression test, acoustic monitoring, splitting, wave velocity

CLC Number: 

  • TU 452
[1] ZHOU Feng-xi, LIU Hong-bo, CAI Yuan-qiang, . Analysis of propagation characteristics of Rayleigh waves in saturated porothermoelastic media [J]. Rock and Soil Mechanics, 2020, 41(1): 315-324.
[2] LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads [J]. Rock and Soil Mechanics, 2019, 40(S1): 267-274.
[3] YANG Dao-xue, ZHAO Kui, ZENG Peng, ZHUO Yu-long, . Numerical simulation of unknown wave velocity acoustic emission localization based on particle swarm optimization algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 494-502.
[4] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[5] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[6] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[7] ZHOU Feng-xi, LIU Hong-bo, . Propagation characteristics of Rayleigh waves in unsaturated soils [J]. Rock and Soil Mechanics, 2019, 40(8): 3218-3226.
[8] CHEN Zhuo-shi, YUAN Xiao-ming, SUN Rui, WANG Ke. Impact of uncertainty in in-situ shear-wave velocity on the judgement of site stiffness [J]. Rock and Soil Mechanics, 2019, 40(7): 2748-2754.
[9] YANG Yang, SUN Rui, CHEN Zhuo-shi, YUAN Xiao-ming. Liquefaction probability formula of shear wave velocity based on conventional parameters of soil layer [J]. Rock and Soil Mechanics, 2019, 40(7): 2755-2764.
[10] LI Tong, FENG Xia-ting, WANG Rui, XIAO Ya-xun, WANG Yong, FENG Guang-liang, YAO Zhi-bin, NIU Wen-jing, . Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(7): 2847-2854.
[11] ZHOU Hui, CHEN Jun, ZHANG Chuan-qing, ZHU Yong, LU Jing-jing, JIANG Yue, . Experimental study of the rockburst model material with low-strength and high-brittleness [J]. Rock and Soil Mechanics, 2019, 40(6): 2039-2049.
[12] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[13] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[14] CHEN Min, ZHANG Tao, SHAN Hua-gang, WANG Xin-zhi, MENG Qing-shan, YU Ke-fu, . Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275-2283.
[15] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .