›› 2014, Vol. 299 ›› Issue (2): 556-564.

• Numerical Analysis • Previous Articles     Next Articles

Seepage-fracture coupling mechanism of rock masses cracking propagation under high hydraulic pressure and numerical verification

ZHAO Yan-lin1, 2, 3, PENG Qing-yang1, 3, WAN Wen1, 3, WANG Wei-jun1, 3, ZHANG Sheng-guo1, 3   

  1. 1. School of Energy and Safty Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 2. State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China; 3. Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2012-12-04 Online:2014-02-11 Published:2014-02-18

Abstract: With the theory of fluid mechanics and fracturing mechanics combined with Monte Carlo method to describe random distribution of rock cracks, seepage-fracture coupling mechanism involving deformation of primary crack, initiation, propagation and coalescence of wing cracks under high hydraulic pressure was studied. The mathematical model of seepage-fracture coupling of rock masses cracks propagation was established. The solving strategies and methods were proposed, as well as developing the analysis program HWFSC.for for seepage-fracture coupling of cracks propagation under high hydraulic pressure on the Fortran95 platform. The fact that crack networks and seepage initial condition vary with seepage conditions embodies in seepage-fracture coupling of cracking propagation under high hydraulic pressure. Coupling analysis of the process of rock cracking propagation during high pressure water injection process comes to the conclusion: starting water pressure has been shown to reside in rock cracking propagation under high hydraulic pressure, when the water pressure is more than the starting water pressure, the wing crack is born on the crack tips, as water pressure on the crack tips increases, the wing cracks propagate, and then coalesce with other cracks, finally stop propagating . The analysis of seepage-fracture coupling considers the influence of the dynamic and static water pressure of the cracks on the cracks normal expansionary and the wing cracks propagation, and the number of connected cracks increases as the seepage develops. Analysis of seepage-fracture coupling analysis of rock cracks can re-create the phenomenon of hydraulic fracturing, describe the process of rock cracks propagation, the rock bridge coalescence and inter-coupling response of seepage in fractured rock masses.

Key words: rock mechanics, high hydraulic pressure, seepage-fracture coupling, numerical verification, hydraulic fracturing

CLC Number: 

  • TU 452
[1] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[2] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[3] SEISUKE Okubo, TANG Yang, XU Jiang, PENG Shou-jian, CHEN Can-can, YAN Zhao-song, . Application of 3D-DIC system in rock mechanic test [J]. Rock and Soil Mechanics, 2019, 40(8): 3263-3273.
[4] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[5] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[6] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[7] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[8] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[9] ZHANG Fan, MA Geng, FENG Dan, . Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[10] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[11] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[12] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[13] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[14] XU Chen-yu, BAI Bing, LIU Ming-ze, . Experimental study of the fracture characteristics of granite under CO2 injection condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1474-1482.
[15] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[9] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .
[10] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .