›› 2014, Vol. 35 ›› Issue (9): 2455-2463.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research status and prospects of constitutive models for municipal solid waste

FENG Shi-jin1, 2, DENG Ying-jun1   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2013-12-26 Online:2014-09-10 Published:2014-09-16

Abstract: This paper summarizes the research status of municipal solid waste (MSW) constitutive models, which is very important to study geotechnical problems in landfills. MSW consists of a variety of inorganic and organic components and has high compressibility and biodegradability; and its physico-mechanical properties gradually change over time. In these existing models, it can be seen that MSW instantaneous deformation, mechanical creep, biodegradation, fiber reinforcement are taken into account. Unfortunately, various influence factors are considered in some models, respectively, or only are simply added in other models. The coupling effects of these factors are not taken into consideration. Furthermore, the future studies and development trend of MSW constitutive models are proposed based on the study of the constitutive models of soils. A variety of factors that influence the stress-strain behavior of MSW should be considered. Meanwhile, a breakthrough should be sought by combining the theories of geotechnical engineering, environmental engineering, chemical engineering and biological engineering. Finally, the theoretical framework for biodegradation, mechanical deformation, fluid flow and contaminant transport in MSW can be established.

Key words: municipal solid waste, biodegradation, constitutive model

CLC Number: 

  • TU 411
[1] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[2] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[3] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[4] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[5] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[6] LI Chen, WU Wen-bing, MEI Guo-xiong, ZONG Meng-fan, LIANG Rong-zhu, . Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3071-3080.
[7] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[8] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[9] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[10] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[11] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[12] SUN Yi-fei, CHEN Cheng, . A state-dependent stress-dilatancy equation without state index and its associated constitutive model [J]. Rock and Soil Mechanics, 2019, 40(5): 1813-1822.
[13] ZHANG Wen-jie, YANG Jin-kang. Dye tracer test on preferential flow pattern in landfilled waste [J]. Rock and Soil Mechanics, 2019, 40(5): 1847-1853.
[14] YANG Qi-lai, XIONG Yong-lin, ZHANG Sheng, LIU Gan-bin, ZHENG Rong-yue, ZHANG Feng, . Elastoplastic constitutive model for soft rock considering temperature effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906.
[15] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .
[2] XU Yuan-jie, PAN Jia-jun, LIU Zu-die. An algorithm for slope paving of concrete faced rockfill dams[J]. , 2009, 30(10): 3139 -3144 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[5] YANG Xiao, CAI Xue-qiong. Vertical vibration of pile in saturated viscoelastic soil layer considering transversal effects[J]. , 2011, 32(6): 1857 -1863 .
[6] DU Xiu-li , LU De-chun. Advances in soil dynamics and geotechnical earthquake engineering[J]. , 2011, 32(S2): 10 -20 .
[7] LI Ning , XU Jian-cong , QIN Ya-zhou . Research on calculation model for stability evaluation of rainfall-induced shallow landslides[J]. , 2012, 33(5): 1485 -1490 .
[8] LI Hong-ru, HU Zai-qiang, FENG Fei, LIU Yin. Application of structural loess binary-medium model to localization shear band[J]. , 2012, 33(9): 2803 -2810 .
[9] WANG Jun ,YE Qiang ,SUN Qi ,YANG Fang ,HU Xiu-qing . Research on application of thin-wall tubular piles to Wenzhou tidal flat soil foundation treatment[J]. , 2012, 33(10): 3030 -3036 .
[10] WANG Jing-lin , ZHENG Ying-ren , CHEN Yu-yao , LI Ke-yu . Discussion on upper-bound method of limit analysis for geotechenical material[J]. , 2003, 24(4): 538 -544 .