›› 2014, Vol. 35 ›› Issue (9): 2515-2521.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of permeability characteristics of backfill paste mixed with unclassified tailings and waste rock

SUN Wei1, 2, WU Ai-xiang1, 2, WANG Hong-jiang1, 2, WANG Shao-yong1, 2, LI Tao1, 2, LI Gong-cheng1, 2   

  1. 1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; 2. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2013-08-16 Online:2014-09-10 Published:2014-09-16

Abstract: The mixed backfill paste for subsidence area is a kind of artificial compound granular media which has wide size fraction and is made of unclassified tailings and waste rock; its permeability performance directly affects the stability of backfill body for subsidence area and other secondary disasters occurrence. Based on homemade experimental apparatus of permeability, the effects of the content of waste rock, waste rock particle size on permeability coefficient of mixed backfill body, and the relevance between backfill paste’s inherent characteristic parameters (the content of particle size below 0.075 mm and 0.02 mm, non-uniform coefficient , mean particle size) and permeability coefficient are studied. Test results show that, with waste rock content and particle size increasing, the permeability coefficient of backfill paste increases; the fine particle effect is remarkable. The content of particle size below 0.075 mm and 0.02 mm in backfill paste has a crucial effect on permeability and has a negative exponent relation with the permeability coefficient. Permeability coefficient increases along with the values. When the value is less than 20, permeability coefficient increases sharply; and when the value is greater than 20, the increase in permeability tends to be stable. Then the quantitative equation of mixed backfill paste permeability coefficient is obtained, which is consistent with the test results.

Key words: subsidence area, mixed backfilling, permeability coefficient, fine particle effect, paste

CLC Number: 

  • TD 853
[1] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[2] KE Wen-hai, GUAN Ling-xiao, LIU Dong-hai, DENG Jian-lin, LI Ke, XU Chang-jie, . Research on upper pipeline-soil interaction induced by shield tunnelling [J]. Rock and Soil Mechanics, 2020, 41(1): 221-228.
[3] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[4] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[5] HU Ming-jian, CUI Xiang, WANG Xin-zhi, LIU Hai-feng, DU Wei, . Experimental study of the effect of fine particles on permeability of the calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930.
[6] LI Xian, WANG Shi-ji, HE Bing-hui, SHEN Tai-yu, . Permeability condition of soil suitable for MICP method [J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2964.
[7] YU Liang-gui, ZHOU Jian, WEN Xiao-gui, XU Jie, LUO Ling-hui, . Standard exploration of permeability coefficient test for clay by HCA [J]. Rock and Soil Mechanics, 2019, 40(6): 2293-2302.
[8] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[9] LIU Yi-fei, ZHENG Dong-sheng, YANG Bing, ZHU Bing, SUN Ming-xiang. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil [J]. Rock and Soil Mechanics, 2019, 40(1): 403-412.
[10] SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Comparative study of microbially induced carbonate precipitation under low temperature conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 224-230.
[11] LIU Zheng-hong, YU Yong-tang, TANG Guo-yi, LIU Zhi, . Permeability tests on Angola Quelo sand [J]. , 2017, 38(S2): 177-182.
[12] QIAN Kun , WANG Xin-zhi , CHEN Jian-wen , LIU Peng-jun,. Experimental study on permeability of calcareous sand for islands in the South China Sea [J]. , 2017, 38(6): 1557-1564.
[13] WANG Yu , GAO Guang-yun, GU Xiao-qiang, SONG Jian,. A numerical study of the influence of permeability coefficient on the liquefaction-induced settlement of sands [J]. , 2017, 38(6): 1813-1818.
[14] CHEN Jie, ZHANG Yong-hao, HAN Xiao-yuan, LIU Yong, LIU Yan, HE Yi-feng. Experimental study of stress and permeability property of compacted bentonite with cracks under water intrusion [J]. , 2017, 38(2): 487-492.
[15] SUN Wei, WU Ai-xiang , HOU Ke-peng, YANG Yi, LIU Lei,. Application of X-Ray CT technology in the pore structure study of subsidence area backfilling body [J]. , 2017, 38(12): 3635-3642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[3] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[4] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[5] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[6] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[7] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[8] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .
[9] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .
[10] LIU Fei-yu , YU Wei , CAI Yuan-qiang , ZHANG Meng-xi . Model test and numerical analysis of geogrid-reinforced pile-supported foundation[J]. , 2012, 33(S1): 244 -250 .