›› 2014, Vol. 35 ›› Issue (9): 2522-2528.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of seismic active earth pressure under vertical steady seepage

HUANG Rui1, 2, XIA Tang-dai1, 2, FANG Kai3, LIU Zhi-jun1, 2   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 3. College of Resources and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2013-06-03 Online:2014-09-10 Published:2014-09-16

Abstract: The calculation expressions of seismic active earth pressure and modified earth pressure coefficient are derived based on the basic hypothesis of Coulomb’s earth pressure theory and a pseudo dynamic method. The formulas focus on a rigid retaining wall with cohesionless backfill and consider two kinds of conditions with vertical steady seepage. After the problem is solved by computer programs and parametric discussion is taken, the results indicate that the active earth pressure increases significantly with the increase of horizontal seismic acceleration; the effect of vertical seismic acceleration on earth pressure is relatively small, which can be ignored. The earth pressure decreases monotonously with the increase of soil friction angle when soil-wall friction angle is small; however, increasing soil friction angle makes the earth pressure initially decrease and then increase as soil-wall friction angle becomes larger. The seepage effect is also investigated, it is shown that the active earth pressure decreases with the increase of hydraulic gradient for downward seepage case, but increases for upward seepage case instead. Through comparison, the calculation results agree well with the existing methods so as to verify the validity of the proposed method.

Key words: earth pressure, earthquake, seepage, pseudo-dynamic method

CLC Number: 

  • TU 432
[1] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[2] ZUO Yong-zhen, ZHAO Na. Experimental study on the seepage filter protection of core-wall material slurry under extreme conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 520-526.
[3] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[4] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[5] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[6] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[7] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[8] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[9] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan. Experimental study of seepage characteristics of consecutive and filling fracture with different roughness levels and gap-widths [J]. Rock and Soil Mechanics, 2019, 40(8): 3062-3070.
[10] ZHANG Tian-jun, PANG Ming-kun, JIANG Xing-ke, PENG Wen-qing, JI Xiang, . Influence of negative pressure on gas percolation characteristics of coal body in perforated drilling hole [J]. Rock and Soil Mechanics, 2019, 40(7): 2517-2524.
[11] HE Ying, YU Qin, LIU Zhong-xian, . Simulation of multi-point spatially correlated earthquake ground motions of sedimentary valleys considering scattering effect [J]. Rock and Soil Mechanics, 2019, 40(7): 2739-2747.
[12] CAO Hong, HU Yao, LUO Guan-yong. Research on approximate calculation method for incomplete wells with filter screen ends away from the confined aquifer level [J]. Rock and Soil Mechanics, 2019, 40(7): 2774-2780.
[13] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[14] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[15] LIU Meng-shi, LUO Qiang, JIANG Liang-wei, LU Qing-yuan, LIANG Duo-wei, . Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(5): 1787-1796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .