›› 2014, Vol. 35 ›› Issue (S1): 299-305.

• Geotechnical Engineering • Previous Articles     Next Articles

Comparison between acceleration response spectra on liquefaction and non-liquefaction sites

SUN Rui, ZHAO Qian-yu, YUAN Xiao-ming   

  1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Received:2013-08-01 Online:2014-06-10 Published:2014-06-20

Abstract: By analyzing the records from stiff sites, soft sites and liquefied sites in 2011 Ms 6.3 New Zealand earthquake, the characteristics and relationship of ground motion on 3 types of sites including the liquefied sites are investigated. The seismic acceleration records at 23 seismic stations whose epicenter distances are less than 50 km and PGA great than 0.05g are collected, in which 3 stiff sites, 11 soft sites and 9 liquefied sites are included. The comparison results of amplification coefficient spectra from 3 types of sites indicate that there are obvious distinction among the stiff sites, soft sites and liquefied sites. From the view of ground motion, the liquefied sites can become an independent type. On the liquefied sites the high frequency component of ground motion decreases and meanwhile the low frequency component significantly amplifies. Compared with non-liquefied sites, the response of the short period structure on the liquefied sites will be reduced by half; but at the same time, the response of long period structure on the liquefied sites will be amplified by 2.5-5.0 times. The influence of liquefaction on the damage of CTV building in Christchurch City in the earthquake is significant because the predominant period of acceleration spectra increased to 0.5-1.0 s from 0.1-0.3 s, which is tallied with the natural period of the building about 0.7 s; and the response of the building increases as the consequence. As a result, the existing structure design method would be dangerous for the structures with long period in the liquefiable sites and the seismic ground motion in the liquefiable sites should be specially considered from the viewpoint of vibration.

Key words: New Zealand earthquake, liquefaction, seismic ground motion

CLC Number: 

  • P 315
[1] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[2] LI Zhao-yan, YUAN Xiao-ming, SUN Rui. Variation tendencies and general rules for critical curve of liquefaction evaluation [J]. Rock and Soil Mechanics, 2019, 40(9): 3603-3609.
[3] YANG Yang, SUN Rui, CHEN Zhuo-shi, YUAN Xiao-ming. Liquefaction probability formula of shear wave velocity based on conventional parameters of soil layer [J]. Rock and Soil Mechanics, 2019, 40(7): 2755-2764.
[4] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[5] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[6] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[7] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[8] PEI Xiang-jun, ZHU Ling, CUI Sheng-hua, ZHANG Xiao-chao, LIANG Yu-fei, GAO Hui-hui, ZHANG Zi-dong. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause [J]. Rock and Soil Mechanics, 2019, 40(3): 1085-1096.
[9] LI Jing, CHEN Yu-min, FANG Zhi, GAO Han, TOBITA Tetsuo, ZHOU Ge, . Liquefaction characteristics analysis on gently tilting desaturated sandy ground [J]. Rock and Soil Mechanics, 2019, 40(11): 4352-4360.
[10] WANG Li-yan, GONG Wen-xue, CAO Xiao-ting, JIANG Peng-ming, WANG Bing-hui. Anti-liquefaction characteristics of gravel steel slag [J]. Rock and Soil Mechanics, 2019, 40(10): 3741-3750.
[11] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Large-scale shaking table model test of liquefiable free field [J]. Rock and Soil Mechanics, 2019, 40(10): 3767-3777.
[12] ZHOU En-quan, WANG Qiong, ZONG Zhi-xin, LU Jian-fei. Cyclic triaxial tests on dynamic characteristics of saturated rubber-sand mixture [J]. Rock and Soil Mechanics, 2019, 40(10): 3797-3804.
[13] GAO Ran, YE Jian-hong, . Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea [J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3896.
[14] XU Cheng-shun, DOU Peng-fei, GAO Liu-cheng, CHEN Su, DU Xiu-li, . Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 147-155.
[15] WANG Hai-bo, WU Qi, YANG Ping,. Effect of fines content on liquefaction resistance of saturated sandy soils [J]. , 2018, 39(8): 2771-2779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .