›› 2014, Vol. 35 ›› Issue (S2): 30-36.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Improvement on safety coefficient of heave-resistant stability of excavations

WANG Hong-xin   

  1. Shanghai Urban Construction Municipal Engineering (Group) Co., Ltd., Shanghai 200065, China
  • Received:2014-06-20 Online:2014-10-31 Published:2014-11-12

Abstract: The plane shape, size of the excavation and embedment depth of the retaining wall all affect the heave-resistant stability of excavations. However, the influence of above factors can’t be comprehensively expressed by the calculation methods of safety coefficient of heave-resistant stability recommended from existing standards and codes. In order to solve this problem and differentiate the situations, the possible failure modes of basal heave are classified; and thereby the corresponding formulas calculating the safety coefficient of heave-resistant stability under different failure modes are given. Based on this method, the heave-resistant stability of excavations will be influenced by the strength, stiffness and embedment depth of the retaining wall. The calculation analyses indicate that, for both the drained and undrained situation, the narrow excavations are more stable than wide ones, and that the stability can be improved by adjusting the embedment depth of the retaining wall. The improved excavation safety factor, can take more factors into account, which provides a theoretical method to reduce the embedded depths of the retaining wall of narrow excavations.

Key words: excavation, heave-resistant stability, size, excavation width, the embedded depth

CLC Number: 

  • TU 470
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] ZHOU Cui-ying, KONG Ling-hua, CUI Guang-jun, YU Lei, LIU Zhen, . Molding simulation of soft rock based on natural red bed materials [J]. Rock and Soil Mechanics, 2020, 41(2): 419-427.
[3] YAN Chao-ping, LONG Zhi-lin, ZHOU Yi-chun, KUANG Du-min, CHEN Jia-min, . Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand [J]. Rock and Soil Mechanics, 2020, 41(2): 581-591.
[4] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[5] KE Jin-fu, WANG Shui-lin, ZHENG Hong, YANG Yong-tao, . Application and promotion of a modified symmetric and anti-symmetric decomposition-based three-dimensional numerical manifold method [J]. Rock and Soil Mechanics, 2020, 41(2): 695-706.
[6] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[7] WANG Jin-chao, WANG Chuan-ying, TANG Xin-jian, HAN Zeng-qiang, WANG Yi-teng, HU Sheng. Research on karst cavity detection method based on multi-frequency borehole sonar [J]. Rock and Soil Mechanics, 2020, 41(1): 353-361.
[8] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[9] ZHOU Meng-jia, WEN Yan-feng, DENG Gang, WANG Yun-jia, SONG Er-xiang, . Three-dimensional discrete element simulation of random breaking strength and size effect in single particle splitting test of rockfill [J]. Rock and Soil Mechanics, 2019, 40(S1): 503-510.
[10] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[11] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[12] TAN Yun-zhi, PENG Fan, QIAN Fang-hong, SUN De-an, MING Hua-jun, . Optimal mixed scheme of graphite-bentonite buffer material [J]. Rock and Soil Mechanics, 2019, 40(9): 3387-3396.
[13] ZHANG Sheng, QIAO Chun-hui, LI Xi, SHEN Yuan, . Theoretical determination of the sieving mass by the gradation diversity [J]. Rock and Soil Mechanics, 2019, 40(7): 2555-2562.
[14] WANG Ping, ZHU Yong-jian, YU Wei-jian, REN Heng, HUANG Zhong, . Experimental analysis on fractional compaction mechanical characteristics of soft and broken rock [J]. Rock and Soil Mechanics, 2019, 40(7): 2703-2712.
[15] ZHANG Sheng, WANG Long-fei, CHANG Xu, WANG Dong-kun, WANG Xiao-liang, QIAO Yang, . Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740-1749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .