›› 2014, Vol. 35 ›› Issue (S2): 593-599.

• Numerical Analysis • Previous Articles     Next Articles

Dynamic numerical analysis of liquefiable sand soil foundation reinforced by compacted gravel pile

YANG Ji-hong1, DONG Jin-yu1, HUANG Zhi-quan1, MA Shu-jiang2, GENG Yun-sheng2   

  1. 1. College of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; 2. The Second Design and Research Institute of Water Conservancy and Hydropower of Hebei Province, Shijiazhuang 050021, China
  • Received:2014-06-03 Online:2014-10-31 Published:2014-11-12

Abstract: The sand liquefaction problem has been one of the important topics in soil dynamics and geotechnical earthquake engineering. Based on a project of the Middle Route of South-to-North Water Transfer, physico-mechanical parameters of soil have been obtained through field and laboratory tests. And the dynamic numerical analysis on the liquefied sand foundation of the main canal which has been reinforced by compacted gravel piles is conducted with FLAC3D. The results show that, for the drainage of the compacted gravel piles, the excess pore water pressure and pore pressure ratio in the saturated sand foundation of the main canal bottom have been significantly reduced compared to ones before reinforcement. Monitoring curves of the saturated sand in the bottom of the main canal show that, with the duration of the seismic loading, the peak values of the excess pore water pressure and pore pressure ratio in the saturated sand foundation decrease significantly compared to ones before reinforcement; and the time-history curve declines quickly when to the peak value, which keeps essentially unchanged before reinforcement. For the drainage and compaction effect of the compacted gravel piles, the liquefaction of the sand layers, in the bottom of the main canal, and from the outside platform of the embankment to the bottom of the slope foot, is eliminated effectively. And no liquefaction occurs in the saturated sand foundation of the main canal bottom after reinforcement.

Key words: compacted gravel pile, liquefiable sand soil, dynamic numerical analysis, excess pore water pressure, pore pressure ratio

CLC Number: 

  • TU 452
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[3] ZHANG Feng, CHEN Guo-xing, WU Qi, ZHOU Zheng-long. Experimental study on undrained behavior of saturated silt subject to wave loading [J]. Rock and Soil Mechanics, 2019, 40(7): 2695-2702.
[4] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[5] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[6] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Large-scale shaking table model test of liquefiable free field [J]. Rock and Soil Mechanics, 2019, 40(10): 3767-3777.
[7] LIU Jia-shun, ZHANG Xiang-dong, SUN Jia-bao, YANG Jian-jun, FANG Tian-jian. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation [J]. , 2018, 39(8): 2787-2794.
[8] WANG Yong-hong, ZHANG Ming-yi, LIU Jun-wei, BAI Xiao-yu, . Influence of excess pore water pressure on shear strength of pile-soil interface in clayey soil [J]. , 2018, 39(3): 831-838.
[9] ZHOU En-quan, ZHU Xiao-dong, LU Jian-fei, WANG Bing-ui, . Apparatus development and experimental study for fluid characteristics of liquefied sand [J]. Rock and Soil Mechanics, 2018, 39(12): 4698-4706.
[10] YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang, . Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table [J]. , 2018, 39(11): 4025-4032.
[11] LIN Cheng-fu, LEI Guo-hui, . Responses of negative excess pore water pressure under unloading in one-dimensional swelling tests [J]. , 2017, 38(12): 3613-3618.
[12] LIU Hong-jun, ZHANG Hao, LI Hong-jiang, YIN Yan-jing,. Finite element analysis of horizontal bearing capacity of umbrella suction anchor foundation in soft clay [J]. , 2017, 38(11): 3325-3331.
[13] HUANG Yong , WANG Jun , MEI Guo-xiong , . Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile [J]. , 2016, 37(10): 2893-2899.
[14] WU Jun , LIAO Shao-ming , Huo Xiao-bo,. Effect of train vibration load of a running metro on excess pore water pressure [J]. , 2015, 36(S1): 496-500.
[15] HUANG Qiang , HUANG Hong-wei , ZHANG Feng , YE Bin , ZHANG Dong-mei , . Research on environmental vibration response of soft saturated soil due to moving metro train [J]. , 2015, 36(S1): 563-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[2] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[3] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[4] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[5] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[6] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[7] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[8] XU Yang, GAO Qian, LI Xin, LI Jun-hua, JIA Yun-xi. In-situ experimental study of permeability of rock and soil aggregates[J]. , 2009, 30(3): 855 -858 .
[9] DENG Hua-feng,ZHANG Guo-dong,WANG Le-hua,DENG Cheng-jin,GUO Jing,LU Tao. Monitoring and analysis of blasting vibration in diversion tunnel excavation[J]. , 2011, 32(3): 855 -860 .
[10] TAN Feng-yi, ZOU Zhi-kui, ZOU Rong-hua, LIN Zu-kai, ZhENG De-gao. Experimental study of engineering property of replaced-backfilling clay[J]. , 2009, 30(S2): 154 -157 .