›› 2011, Vol. 32 ›› Issue (12): 3701-3707.

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of surface subsidence of tunnel built by pipe-roof pre-construction method

LI Yong-suo1, 2, ZHANG Ke-neng1, HUANG Chang-bo3, LI Zhong3, DENG Mei-long3   

  1. 1. School of Geoscience and Info-Physics, Central South University, Changsha 410083, China; 2. School of Civil Engineering, Hunan City University, Yiyang, Hunan 413000, China; 3. China Construction Municipal Construction Corporation Limited, Beijing 100163, China
  • Received:2011-06-02 Online:2011-12-10 Published:2011-12-13

Abstract: Underground station of Shenyang Metro line 2 is the first underground engineering built by pipe-roof pre-construction method (PPM). The surface subsidence caused by the construction was monitored; and revised Peck model was developed to predict the subsidence. Some conclusions are drawn as follows. (1) The predicted result is consistent well with the monitoring data. (2) Surface subsidence caused by tunnel construction with PPM is characterized by the whole subsidence; and the subsidence value is pretty equal to the one of underground structure foundation, and it is effective to control surface subsidence by controlling the the sink of foundation of tunnel structure with PPM. (3) The underground permanent structure built before constructing tunnel with PPM could obviously constraint the surrounding rock with 0.0005%-0.0020% of stratum loss rate and 0.5 of width coefficient of sinking tank. (4) Surface subsidence caused by PPM is much less than the normal construction method, which has significantly social and environmental benefits; and this method is suitable to construct the underground urban traffic hub and tunnel projects that crossing traffic trunk lines and is worth to be studied and promoted further.

Key words: pipe-roof pre-construction method, surface subsidence, tunnel, Peck method, new tubular roof method, tubular roof method, pipe jacking

CLC Number: 

  • U 25
[1] YANG Zhen-xing, CHEN Jian, SUN Zhen-chuan, YOU Yong-feng, ZHOU Jian-jun, LÜ Qian-qian, . Experimental study on improved seawater slurry for slurry shield [J]. Rock and Soil Mechanics, 2020, 41(2): 501-508.
[2] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[3] HOU Gong-yu, XIE Bing-bing, HAN Yu-chen, HU Tao, LI Zi-xiang, YANG Xing-kun, ZHOU Tian-ci, XIAO Hai-lin, . Experimental study and engineering application of coupling performance between distributed embedded optical fiber and tunnel lining [J]. Rock and Soil Mechanics, 2020, 41(2): 714-726.
[4] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[5] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[6] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[7] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[8] LI Zhi-cheng, FENG Xian-dao, SHENG Li-long, . Experimental study of deformation characteristics of pebble cushion with furrow for immersed tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 189-194.
[9] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[10] CHEN Wu, ZHANG Guo-hua, WANG Hao, ZHONG Guo-qiang, WANG Cheng-tang, . Evaluation of possibility of tunnel collapse by drilling and blasting method based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(S1): 319-328.
[11] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[12] CHEN Wu, ZHANG Guo-hua, WANG Hao, CHEN Li-biao, . Risk assessment of mountain tunnel collapse based on rough set and conditional information entropy [J]. Rock and Soil Mechanics, 2019, 40(9): 3549-3558.
[13] ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, WANG Shuai, LUO Rong, FAN Lei. Review of bearing capacity and deformation characteristics of tunnel- type anchorage for suspension bridge [J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.
[14] YAN Jian, HE Chuan, YAN Qi-xiang, XU Jin-hua, . In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel [J]. Rock and Soil Mechanics, 2019, 40(9): 3593-3602.
[15] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .