›› 2012, Vol. 33 ›› Issue (2): 327-335.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of ground vibration from trains caused by track irregularities

CAI Yuan-qiang, WANG Yu, CAO Zhi-gang, XU Chang-jie   

  1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
  • Received:2010-06-15 Online:2012-02-10 Published:2012-02-14

Abstract: The vibrations of vehicle-track-saturated ground coupling system subjected to moving train loads are investigated by a semi-analytical approach. The theoretical model is divided into three components: the vehicle is described as a multi-rigid-body system, and a linear Hertizian contact spring between each wheel and the rail is used to simulate the dynamic wheel-rail interaction forces; a periodically supported Euler beam is introduced to simulate the track system; a fully saturated poroelastic half-space is used to simulate the ground and governed by Biot’s theory. Train loads include two parts: the axle loads and the dynamic wheel-rail loads assumed to be generated from the track irregularity. The governing equations of each component are solved by using Fourier transform, and these components of the whole system are integrated to meet the displacement compatibility and force equilibrium by the substructure method. The time domain responses of the ground are obtained through the fast Fourier transform. On the basis of the analysis of the dynamic wheel-rail loads, the dynamic responses of the ground subjected to the axle loads and the dynamic wheel-rail loads are investigated. Influences of the sleeper span and the soil intrinsic permeability on the soil dynamic responses are also analyzed. It is concluded that the dynamic wheel-rail load has important contribution to the far-field ground vibrations, and also the sleeper span has obvious influence on the track and ground vibrations.

Key words: Biot’s theory, train loads, track irregularity, dynamic response

CLC Number: 

  • TU 47
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[4] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[5] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[6] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[7] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[8] MEI Hui-hao, LENG Wu-ming, NIE Ru-song, LIU Wen-jie, WU Xiao-wei, . Random distribution characteristics of peak dynamic stress on subgrade surface of heavy haul railway [J]. Rock and Soil Mechanics, 2019, 40(4): 1603-1613.
[9] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[10] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[11] CUI Qi, HOU Jian-guo, SONG Yi-le. Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station [J]. Rock and Soil Mechanics, 2019, 40(2): 809-817.
[12] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[13] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[14] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[15] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[10] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .