›› 2012, Vol. 33 ›› Issue (11): 3393-3399.

• Geotechnical Engineering • Previous Articles     Next Articles

Structure modeling and mechanical parameters research of outwash deposits based on digital image analysis

SHI Chong1, 2,WANG Sheng-nian1, 2,LIU Lin1, 2,CHEN Hong-jie1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China
  • Received:2011-10-12 Online:2012-11-12 Published:2012-11-14

Abstract: Outwash deposit is one of the typical mixed materials, which is made up of soft soil grains and hard rock mass; and it is very difficult to determine its mechanical parameters and analyze its mechanical characteristics. Digital image reconstruction method is used here to help construct the structure of outwash deposits and to reflect the distribution of stones as well as the feature of clump. So a modeling method with particle discrete element method based on image recognition is built up, by which the laws on mechanical parameters of media distribution, strength of soil particles are researched. Then deformation characteristic, peak strength and shear strength after peak are analyzed. It is shown that the deformation curve before peak strength presents a feature of nonlinear hardening process, while it is like perfect plasticity after peak strength; composite friction angle of mixed material will decrease with the increase of bonding strength; when the stone content is less than 25%, composite shear strength approximately is equal to soil strength; when the stone content is higher than 25%, the shear strength will increase with the increase of stone content. Due to the effect of rock structure, the correlation coefficient between stone content and friction angle is greater than that between stone content and cohesion strength; and it can be concluded that the actual friction angle of geology deposits of Gushui Hydropower station is 0-8 degrees higher which is agreement to engineering conclusion. This method can consider stones of large size, which is a great difficulty in laboratory test, and can be a beneficial method for mechanical test in determining shear strength.

Key words: outwash deposits, soil-rock mixture, image recognition, geotechnical parameters

CLC Number: 

  • TU 452
[1] JIANG Shui-hua, FENG Ze-wen, LIU Xian, JIANG Qing-hui, HUANG Jin-song, ZHOU Chuang-bing. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach [J]. Rock and Soil Mechanics, 2020, 41(1): 325-335.
[2] TIAN Mi, SHENG Xiao-tao, . Method for determining minimum test data quantity for geotechnical engineering investigation [J]. Rock and Soil Mechanics, 2019, 40(S1): 400-408.
[3] LI Li, YU Cui, SUN Tao, HAN Zeng-qiang, TANG Xin-jian, . Automatic identification of solution fissure from borehole digital optical image based on color features [J]. Rock and Soil Mechanics, 2019, 40(8): 3274-3281.
[4] ZHONG Zu-liang, BIE Cong-ying, FAN Yi-fei, LIU Xin-rong, LUO Yi-qi, TU Yi-liang, . Experimental study on grouting diffusion mechanism and influencing factors of soil-rock mixture [J]. Rock and Soil Mechanics, 2019, 40(11): 4194-4202.
[5] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[6] WANG Peng-fei, LI Chang-hong, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone [J]. Rock and Soil Mechanics, 2018, 39(S2): 53-61.
[7] FENG Shang-xin, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, CHEN Xi. Mesostructural change of soil-rock mixtures based on NMR technology [J]. , 2018, 39(8): 2886-2894.
[8] XIA Jia-guo, GAO Wei, CHENG Ya-xing, HU Rui-lin, XU Pei-fen, SUI Hao-yue, . A new approach for precise detection of the geological structure of soil-rock mixture deposit and its application [J]. , 2018, 39(8): 3087-3094.
[9] LEI Xiao-dan , YANG Zhong-ping, ZHANG Xiao-jing, TU Yi-liang, LIU Shu-lin, HU Yuan-xin,. Shear properties and rock block breakage characteristics of soil-rock mixtures [J]. , 2018, 39(3): 899-908.
[10] ZHAO Xin-yao, CHEN Jian-gong, ZHANG Hai-quan, YANG Ze-Jun, HU Ri-cheng, . Random generation of soil-rock mixture models by rock shape database using digital imaging technology [J]. Rock and Soil Mechanics, 2018, 39(12): 4691-4697.
[11] CHEN Li, ZHANG Peng, ZHENG Hong,. Mesostructure modeling of soil -rock mixtures and study of its mesostructural mechanics based on numerical manifold method [J]. , 2017, 38(8): 2402-2410.
[12] ZHU Ze-qi, SHENG Qian, CHENG Hong-zhan, LI Jian-he, BIAN Xiao-man. 3D stochastic model and numerical simulation of soil-rock mixture based on direct method [J]. , 2017, 38(4): 1188-1194.
[13] JIN Lei, ZENG Ya-wu, ZHANG Sen. Large scale triaxial tests on effects of rock block proportion and shape on mechanical properties of cemented soil-rock mixture [J]. , 2017, 38(1): 141-149.
[14] JIANG Jian-qing , YANG Guo-lin,. Field test and numerical simulation on mechanical behavior of red bed soil-rock embankment reinforced with gabion [J]. , 2016, 37(1): 156-165.
[15] TANG Xiao-song,LI Dian-qing,ZHOU Chuang-bing,PHOON Kok-kwang, . Bootstrap method for joint probability distribution identification of correlated geotechnical parameters [J]. , 2015, 36(4): 913-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[9] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[10] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .