›› 2013, Vol. 34 ›› Issue (4): 1185-1190.

• Numerical Analysis • Previous Articles     Next Articles

Stability analysis of tailings dam based on finite element limit equilibrium method

YU Si-ying, SHAO Long-tan, LIU Shi-yi   

  1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2012-01-30 Online:2013-04-10 Published:2013-04-16

Abstract: Under the condition of plane strain, finite element limit equilibrium method is applied to evaluate the stability of tailings dam. This method can be better combined with characteristics of the limit equilibrium analysis methods and finite element stress analysis. And it is based on the elastoplastic stress-strain analysis. Considering the overall stress field of the structure reasonably and accurately; the most dangerous location of slip surface and the corresponding minimum safety factor are determined by Hooke-Jeeves optimized searching method. An example of stability analysis of tailings dam engineering practice is proposed. The differences of safety factor quantity, shape and location of slip surface among stability methods: finite element limit equilibrium method, limited equilibrium slice method and finite element shear strength reduction method, are compared and studied in the normal, flood and special conditions. The safety assessment of tailings dam is made by using finite element limit equilibrium method. The results can provide a reliable basis and technical support for the safety of the design and construction of tailings dams.

Key words: tailings dam, finite element limit equilibrium method, stability, seepage, earthquake

CLC Number: 

  • TD 854
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] ZUO Yong-zhen, ZHAO Na. Experimental study on the seepage filter protection of core-wall material slurry under extreme conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 520-526.
[4] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[5] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[6] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[7] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[8] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[9] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[10] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[11] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[12] NIE Xiu-peng, PANG Huan-ping, SUN Zhi-bin, XIE Song-mei, HOU Chao-qun. Upper bound analysis of seismic stability of 3D reinforced slopes [J]. Rock and Soil Mechanics, 2019, 40(9): 3483-3492.
[13] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[14] CHEN Chong, WANG Wei, LÜ Hua-yong, . Stability analysis of slope reinforced with composite anti-slide pile model [J]. Rock and Soil Mechanics, 2019, 40(8): 3207-3217.
[15] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[2] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[3] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[4] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[5] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[6] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[7] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[8] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[9] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .
[10] LUO Gang , HU Xie-wen , GU Cheng-zhuang . Study of kinetic failure mechanism and starting velocity of consequent rock slopes under strong earthquake[J]. , 2013, 34(2): 483 -490 .