›› 2013, Vol. 34 ›› Issue (5): 1367-1374.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of development of soil arching effect in piled embankment

FEI Kang1, 2,CHEN Yi1,WANG Jun-jun1   

  1. 1. Institute of Geotechnical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
  • Received:2012-03-02 Online:2013-05-10 Published:2013-05-14

Abstract: In order to study the development of soil arching in the piled embankment, a series of three-dimensional model tests are conducted. The relationships between stress reduction ratio and ground settlement with different pile cap sizes and different geosynthetic reinforcement materials are analyzed in detail. Based on the test results, it is shown that the effect of soil arching develops gradually with differential settlement and it is more significant at large differential settlement. The inclusion of geosynthetic reinforcements reduces the differential settlement and weakens the soil arching effect correspondingly; and the load transfer from soil to pile top is caused by the combination of soil arching effect and tension membrane effect. The finite element sensitivity analyses are also carried out to study the effects of pile spacing, embankment height and other factors which did not included in the model tests. The focus of numerical analysis are laid on the development process of the soil arching effect and an index is proposed to describe the mobilized degree of the soil arching. Based on the test data, the results of the finite element analyses, and the experimental data collected from literature, a hyperbola equation is suggested to describe the relationship between the mobilized degree of the soil arching and the normalized deformation. The given equation can be used to account the development of soil arching with settlement.

Key words: piled embankment, geosynthetic reinforcement, soil arching effect, differential settlement, model test, finite element method

CLC Number: 

  • TU 473
[1] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[2] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[3] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[4] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[5] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[6] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[7] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[8] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[9] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[10] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[11] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[12] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[13] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[14] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[15] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[2] YU Xiao-jun,SHI Jian-yong,XU Yang-bin. Modelling disturbed state and anisotropy of natural soft clays[J]. , 2009, 30(11): 3307 -3312 .
[3] GAO Wei. Analysis of stability of rock slope based on ant colony clustering algorithm[J]. , 2009, 30(11): 3476 -3480 .
[4] XU Bin,YIN Zong-ze,LIU Shu-li. Experimental study of factors influencing expansive soil strength[J]. , 2011, 32(1): 44 -50 .
[5] DAI Ren-ping,GUO Xue-bin,GONG Quan-mei,PU Chuan-jin,ZHANG Zhi-cheng. SHPB test on blasting damage protection of tunnel surrounding rock[J]. , 2011, 32(1): 77 -83 .
[6] YANG Yang, YAO Hai-lin, LU Zheng. Model of subgrade soil responding to change of atmosphere under evaporation and its influential factors[J]. , 2009, 30(5): 1209 -1214 .
[7] TANG Chao-sheng,SHI Bin,GAO Wei,LIU Jin. Single fiber pull-out test and the determination of critical fiber reinforcement length for fiber reinforced soil[J]. , 2009, 30(8): 2225 -2230 .
[8] DENG Ya-hong,XIA Tang-dai,PENG Jian-bing,LI Xi-an,HUANG Qiang-bing. Research on shear particle system method of natural frequency of horizontal layered soils[J]. , 2009, 30(8): 2489 -2494 .
[9] . [J]. , 2011, 32(7): 2236 -2240 .
[10] CHU Xi-hua. A generation method for numerical specimen of granular materials by sort of coordinates[J]. , 2011, 32(9): 2852 -2855 .