›› 2013, Vol. 34 ›› Issue (6): 1553-1559.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on the mechanical behavior of soil-reinforcement interface by horizontal cyclic shear test

XU Chao1, 2, CHEN Hong-shuai1, 2, SHI Zhi-long1, 2, REN Fei-fan1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2012-04-09 Online:2013-06-10 Published:2013-06-14

Abstract: The mechanical properties of soil-reinforcement interaction are of utmost importance for the design and stability analysis of reinforced soil structures. Using large-multifunctional interface shear apparatus, a series of horizontal cyclic shear tests are carried out between geogrid and standard sand. The mechanical behavior of geogrid-soil interface is recorded and analyzed. Then the influences of the characteristics of horizontal cyclic load on the interface shear strength and vertical displacement are studied. In the end, the mechanism of soil-reinforcement interaction under horizontal cyclic load is investigated. The results of this research indicate that the curves of shear force and displacement merge into one curve gradually with the increase of shear cycles; the change of shear stress summit is not obvious; the interface shear modulus increases with the cyclic load and reaches stable. The influence of the amplitude and velocity of shear displacement on shear strength is not evident; but the amplitude and velocity of shear displacement have significant effects on the vertical displacement of the samples during horizontal cyclic shear tests. In the process of horizontal cyclic shear tests, the sample takes obvious vertical displacement. The reinforcement has effective confinement to the vertical deformation of test samples.

Key words: soil-reinforcement interface, laboratory test, horizontal cyclic load, geogrid

CLC Number: 

  • TU 411
[1] YIN Feng, ZHOU Hang, LIU Han-long, CHU Jian, . Experimental investigation on dynamic characteristics of XCC pile-geogrid composite foundation under static and dynamic loads of vehicles [J]. Rock and Soil Mechanics, 2019, 40(4): 1324-1330.
[2] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[3] LIU Fang-cheng, WU Meng-tao, YANG Jun, . Experimental study of strength characteristics of geogrid reinforced rubber sand mixtures [J]. Rock and Soil Mechanics, 2019, 40(2): 580-591.
[4] WANG Jia-quan, XU Liang-jie, HUANG Shi-bin, LIU Zheng-quan. Bearing capacity analysis of geogrid reinforced abutment retaining wall under dynamic load [J]. Rock and Soil Mechanics, 2019, 40(11): 4220-4228.
[5] WANG Jun, SHI Jing, LIU Fei-yu, CAI Yuan-qiang, . Effect of particle gradation on static and dynamic direct shear properties of geogrid-sand interface [J]. Rock and Soil Mechanics, 2019, 40(1): 109-117.
[6] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[7] ZHANG Cong, LIANG Jing-wei, ZHANG Jian, YANG Jun-sheng, ZHANG Gui-jin, YE Xin-tian,. Mechanism of Bingham fluid permeation and diffusion based on pulse injection [J]. , 2018, 39(8): 2740-2746.
[8] WANG Jun, WANG Chuang, HE Chuan, HU Xiong-yu, JIANG Ying-chao,. Heading stability analysis of EPB shield tunnel in sandy cobble ground using laboratory test and 3D DEM simulation [J]. , 2018, 39(8): 3038-3046.
[9] WANG Ming-yuan, WU Jin-biao , ZHANG Jian-jing, LIAO Wei-ming , YAN Kong-ming,. Development of a cyclic loading instrument for laboratory model test and its experimental study [J]. , 2018, 39(3): 1145-1152.
[10] WANG Jia-quan, ZHANG Liang-liang, LIU Zheng-quan, ZHOU Yuan-wu. Large model test on geogrid reinforced sand soil foundation under dynamic loading [J]. , 2018, 39(10): 3539-3547.
[11] SUN Kai-qiang, TANG Chao-sheng, LIU Chang-li, LI Hao-da, WANG Peng, LENG Ting. Research methods of soil desiccation cracking behavior [J]. , 2017, 38(S1): 11-26.
[12] YANG Hai-peng, BAI Bing, NIE Qing-ke,. Experimental study of influence of red mud leachate on cohesive soil and reinforced red mud [J]. , 2017, 38(S1): 299-304.
[13] WANG Zhi-jie, FELIX JACOBS, MARTIN ZIEGLER,. Influence of geogrid transverse members on strength and deformation behavior of reinforced granular soil [J]. , 2017, 38(8): 2234-2240.
[14] YU Hao-jun, PENG She-qin, ZHAO Qi-hua, WU Hao, DING Zi-han, MU Hong-hai, . Study on coefficient of horizontal resistance for gravel soil foundation on slopes [J]. , 2017, 38(6): 1682-1687.
[15] WANG Jia-quan, ZHOU Yue-fu, TANG Xian-yuan, HUANG Shi-bin,. Development and application of large size direct shear test apparatus with visual and digital collection functions for reinforced soil [J]. , 2017, 38(5): 1533-1540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Long-hai, WANG Ming-nian, ZHAO Dong-ping, JI Yan-lei. Study of deformation controlling measures for large-span shallow tunnel[J]. , 2010, 31(2): 577 -581 .
[2] CHEN Yun-ping, WANG Si-jing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading[J]. , 2010, 31(4): 1030 -1034 .
[3] CHEN Yu,ZHANG Qing-he,ZHU Ji-wen,YAO Hai-ming. Coupled fluid-mechanical analysis of DOT shield tunnel construction beneath adjacent existing underpass[J]. , 2010, 31(6): 1950 -1955 .
[4] JIA Qiang,ZHANG Xin. Numerical analysis of slab underpinning construction in development of underground space[J]. , 2010, 31(6): 1989 -1994 .
[5] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[6] LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Field response characteristic test of expansive soil engineering behavior under effect of atmosphere[J]. , 2009, 30(7): 2069 -2074 .
[7] SONG Yong-jun , HU Wei , WANG De-sheng , ZHOU Jun-lin. Analysis of squeezing effect of compaction piles based on modified Cam-clay model[J]. , 2011, 32(3): 811 -814 .
[8] SUN De-an,MENG De-lin,SUN Wen-jing,LIU Yue-miao. Soil-water characteristic curves of two bentonites[J]. , 2011, 32(4): 973 -0978 .
[9] LU Tao, WANG Kong-wei, LI Jian-lin. Study of failure mode of sandstone under reservoir water pressures[J]. , 2011, 32(S1): 413 -0418 .
[10] WEI Ming-yao, WANG En-yuan, LIU Xiao-fei, WANG Chao. Numerical simulation of rockburst prevention effect by blasting pressure relief in deep coal seam[J]. , 2011, 32(8): 2539 -2543 .