›› 2013, Vol. 34 ›› Issue (7): 2017-2022.

• Geotechnical Engineering • Previous Articles     Next Articles

Application of numerical simulation to pilot project of CO2 geological sequestration

LING Lu-lu1,XU Ya-qin1,WANG Yong-sheng2,ZHANG Ke-ni1   

  1. 1. College of Water Sciences, Beijing Normal University, Beijing 100875, China; 2. China Shenhua Coal to Liquid and Chemical Co., Ltd., Beijing 100011, China
  • Received:2012-09-07 Online:2013-07-10 Published:2013-07-15

Abstract: The geological sequestration of CO2 in deep saline aquifer is an effective countermeasure for reducing global warming and greenhouse effect. Based on the Shenhua Ordos CO2 capture and storage (CCS) pilot project, the behavior of CO2 in deep saline aquifers is investigated. The transport process of CO2 fluid, the pressure buildup of system and the reserves potential of sequestration are analyzed. This model can provide technological support and save human and financial resources for Shenhua CCS engineering project. First, the model is calibrated by comparing simulated results and measured pressure values. The suitable pressure curve is obtained and the main hydrological parameters are determined at this stage. Then an assumption of CO2 continuing injection for 3 years is simulated based on the former model. The CO2 diffusion, solution behavior, pressure variation and total reserves of strata are analyzed. The conclusions are drawn as follows: the largest distance of CO2 migration is about 350 m; hydraulic fracturing can improve CO2 injectivity obviously; cap rock can effectively prevent the escape of CO2. Simulation results demonstrate that even though the deep saline aquifers of Ordos basin has low penetrability, it is also suitable for CO2 sequestration.

Key words: CO2 capture and storage (CCS), CO2, deep saline aquifer, TOUGH2 software CO2 capture and storage (CCS), CO2, deep saline aquifer, TOUGH2 software

CLC Number: 

  • P 66
[1] ZHANG Qiang, LI Xiao-chun, ZHOU Ying-bo, SHI Lu, BAI Bing, . Shear behavior of the Triassic sandstone in Sichuan under high pore pressure of H2O/CO2 conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3028-3036.
[2] XU Chen-yu, BAI Bing, LIU Ming-ze, . Experimental study of the fracture characteristics of granite under CO2 injection condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1474-1482.
[3] CHEN He-long, WEI Chang-fu, TIAN Hui-hui, WEI Hou-zhen,. Triaxial compression tests on gas saturated CO2-hydrate-bearing sand [J]. , 2018, 39(7): 2395-2402.
[4] WU Hai-qing, BAI Bing, LI Xiao-chun, LIU Ming-ze, HE Yuan-yuan, . Analytical model of fluid pressure evolution in the reservoir for CO2 geological storage [J]. , 2018, 39(6): 2099-2105.
[5] LI Kai-da, HU Shao-bin, LI Xiao-chun, WU Jian, FAN Qing-yi, WU Hai-qing,. Influence of single-phase fluid on strength characteristics of sandstone [J]. , 2018, 39(5): 1789-1795.
[6] TANG Ji-ren , LU Yi-yu, CHEN Yu-ting, ZHANG Xin-wei , AO Xiang, JIA Yun-zhong, LI Qian, . Experimental study of damage of shale mechanical properties under supercritical CO2 [J]. , 2018, 39(3): 797-802.
[7] WANG Hai-zhu, LI Gen-sheng, HE Zhen-guo, SHEN Zhong-hou, LI Xiao-jiang, ZHANG Zhen-xiang, WANG Meng, YANG Bing, ZHENG Yong, SHI Lu-jie,. Analysis of mechanisms of supercritical CO2 fracturing [J]. , 2018, 39(10): 3589-3596.
[8] XIE Jian, WEI Ning, WU Li-zhou, ZHANG Ke-ni, XU Mo, . Progress in leakage study of geological CO2 storage [J]. , 2017, 38(S1): 181-188.
[9] TIAN Zhi-wei, TAN Yun-liang,. Lattice Boltzmann simulation of CO2 reactive transport in throat fractured media [J]. , 2017, 38(3): 663-671.
[10] GAO Shuai, WEI Ning, LI Xiao-chun, LEI Hong-wu, LIU Ming-ze,. Effect of layered heterogeneity on CO2 migration and leakage mechanism in the cap rock [J]. , 2017, 38(11): 3287-3294.
[11] LI Qi,SHI Hui,YANG Duo-xing,. Classification of hazard levels of carbon dioxide dispersion under a well blowout in a CCS project [J]. , 2016, 37(7): 2070-2078.
[12] LI Xiao-chun, YUAN Wei, BAI Bing,. A review of numerical simulation methods for geomechanical problems induced by CO2 geological storage [J]. , 2016, 37(6): 1762-1772.
[13] XIE Jian , ZHANG Ke-ni , WANG Yong-sheng , QIN Li-qing , GUO Chao-bin,. Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin, China [J]. , 2016, 37(1): 166-174.
[14] CHEN Li-qiang, TIAN Shou-ceng, LI Gen-sheng, FAN Xin. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis [J]. , 2015, 36(S2): 125-131.
[15] GAO Shuai, WEI Ning, LI Xiao-chun. Review of CO2 breakthrough pressure measurement methods on caprocks [J]. , 2015, 36(9): 2716-2727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] . Numerical implementation of discontinuities in dual media 3D model for thermo-hydro-mechanical coupling[J]. , 2010, 31(2): 638 -644 .
[3] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[6] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[7] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[8] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .
[9] HE Si-ming , ZHANG Xiao-xi , WANG Dong-po . Study of computation methods of ultimate uplift capacity and determining position of failure surface of uplift piles in layered soil[J]. , 2012, 33(5): 1433 -1437 .
[10] LIU Xiao-li , LI Bai . Analysis of supporting mechanism of micro-steel-pipe piles in rock foundation pit[J]. , 2012, 33(S1): 217 -222 .