›› 2007, Vol. 28 ›› Issue (4): 779-784.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on ultrasonic properties of sandstone before and after high temperature

HE Guo-liang,WU Gang,HUANG Xing-chun,ZHANG Lei,QIU Yi-ping   

  1. Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2005-05-09 Online:2007-04-10 Published:2013-09-05

Abstract: Ultrasonic velocities and dimensions of sandstone specimens from Jiaozuo that experience different temperature(100 ℃-1 200 ℃) are measured; and their uniaxial strength are tested. P-wave attenuation coefficients of rock specimens are calculated. Crack densities are calculated using relations between ultrasonic velocity and elastic moduli. The volumes, ultrasonic velocities and attenuation coefficients of sandstone specimens before and after high temperature are compared. Results show that the cracks of sandstone specimens develop so that the compactness and ultrasonic velocities of specimens decline. For sandstone specimens that experience different temperature the changes of ultrasonic velocity and uniaxial strength are obviously discrepant. But changes of attenuation coefficients are similar to uniaxial strength. It can be taken as reference to evaluate uniaxial strength at a certain extent.

Key words: post-high temperature, sandstone, ultrasonic properties, crack density, uniaxial strength

CLC Number: 

  • TU 458+.3
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
[2] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[3] XU Bao-tian, ZHANG Li-ping, YAN Xiao-ying, QIU De-jun, . Effect of void characteristics on deteriorating rules of sandstone due to water [J]. Rock and Soil Mechanics, 2019, 40(2): 561-569.
[4] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[5] XIE Kai-nan, JIANG De-yi, SUN Zhong-guang, SONG Zhong-qiang, WANG Jing-yi, YANG Tao, JIANG Xiang, . Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(2): 653-659.
[6] YUAN Peng-bo, YANG Xuan-yu, ZHAO Tian-yu, . Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution [J]. Rock and Soil Mechanics, 2019, 40(1): 227-234.
[7] ZENG Yan-jin, RONG Guan, PENG Jun, SHA Song, . Experimental study of crack propagation of marble after high temperature cycling [J]. , 2018, 39(S1): 220-226.
[8] FU Yan, YUAN Wen, LIU Xin-rong, MIAO Lou-li, XIE Wen-bo,. Deterioration rules of strength parameters of sandstone under cyclical wetting and drying in acid-based environment [J]. , 2018, 39(9): 3331-3339.
[9] FENG Xiao-wei, WANG Wei, WANG Ru-bin, YUAN Shuang-shuang, ZHU Qi-zhi,. A rheological damage model of sandstone under water-rock chemical interaction [J]. , 2018, 39(9): 3340-3346.
[10] CHEN Zi-quan, HE Chuan, DONG Wei-jie, MA Gao-yu, PAN Xu-yong, PEI Cheng-yuan,. Physico-mechanical properties and its energy damage evolution mechanism of the Jurassic and Cretaceous argillaceous sandstone in Northern Xinjiang [J]. , 2018, 39(8): 2873-2885.
[11] ZHANG Tian-jun, SHANG Hong-bo, LI Shu-gang, WEI Wen-wei, BAO Ruo-yu, PAN Hong-yu,. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states [J]. , 2018, 39(7): 2361-2370.
[12] CHEN Bin, ZHOU Le-yi, ZHAO Yan-lin, WANG Zhi-chao, CHAO Dai-jie, JIA Gu-ning,. Relationship between microstructure and shear strength of weak interlayer of red sandstone under dry and wet cycles [J]. , 2018, 39(5): 1633-1642.
[13] LI Kai-da, HU Shao-bin, LI Xiao-chun, WU Jian, FAN Qing-yi, WU Hai-qing,. Influence of single-phase fluid on strength characteristics of sandstone [J]. , 2018, 39(5): 1789-1795.
[14] WU Qiu-hong, ZHAO Fu-jun, LI Xi-bing, WANG Shi-ming, WANG Bin, ZHOU Zhi-hua,. Mechanical properties of ring specimens of sandstone subjected to diametral compression [J]. , 2018, 39(11): 3969-3975.
[15] LI Yi-fan, DONG Shi-ming, PAN Xin, LI Nian-bin, YUAN Ye. Experimental study of mixed-mode I/III fracture of sandstone [J]. , 2018, 39(11): 4063-4070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wei,LI Xing-zhao. Analysis method of rigid piled raft foundation under vertical loading[J]. , 2009, 30(11): 3441 -3446 .
[2] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[4] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[5] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[6] WANG Ming-nian, LU Jun-fu, LIU Da-gang, ZHANG Jian-guo. Study of absolute deformation control criterion and its application for large section subsea tunnel with “CRD” method[J]. , 2010, 31(10): 3354 -3360 .
[7] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[8] GONG Cheng-ming,CHENG Qian-gong,LIU Zheng-ping. Centrifuge model tests on excavation and reinforcement effect of loess slope[J]. , 2010, 31(11): 3481 -3486 .
[9] ZHENG Hao,LIU Han-long,LEI Yu-hua,REN Lian-wei. Large-scale model test analysis of behaviors of jet grouting (JG) soil-cement-pile strengthened pile under lateral load[J]. , 2011, 32(1): 217 -223 .
[10] YAN E-chuan, LIU Huan-bin, LI Xiang-yi, WU Yi-ping. Improvement of compatible distortion method for structure of pile-anchor[J]. , 2009, 30(5): 1446 -1450 .