›› 2018, Vol. 39 ›› Issue (9): 3340-3346.doi: 10.16285/j.rsm.2017.1819

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A rheological damage model of sandstone under water-rock chemical interaction

FENG Xiao-wei1,2, WANG Wei1,2, WANG Ru-bin1,2, YUAN Shuang-shuang1,2, ZHU Qi-zhi1,2   

  1. 1. Key Laboratory of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Jiangsu Research Center for Geomechanical Engineering Technology, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2017-09-02 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Key Research and Development Program of China(2017YFC1501100),the National Natural Science Foundation of China (11672343,51679069) and the Fundamental Research Funds for the Central Universities(2016B20214).

Abstract: Through the analysis of existed triaxial creep test results of red sandstone under the chemical corrosion, it is known that water-rock chemical interaction can accelerate the development of damage and enhance the creep properties of red sandstones. In this paper, based on the chemical kinetic theory of water-rock chemical interaction, the loss of the soluble cement in red sandstone is the key reason for the deterioration of rock mechanical properties under the interaction of chemical corrosion. The chemical damage factor considering the initial pH value and the time is defined by the chemical reaction rate equation and the change of pH value of solution during the immersion process. Meanwhile,based on the generalized Kelvin model, the rheological damage constitutive model of sandstone considering chemical corrosion is proposed. The parameters of the model are identified and verified by the creep results of red sandstone under chemical corrosion. Results show that the proposed model is valid and reasonable, which can well describe the creep properties of sandstones under chemical corrosion.

Key words: sandstone, chemical corrosion, generalized Kelvin model, chemical damage, rheological damage model

CLC Number: 

  • TU 411

[1] ZHANG Ke, LI Na, CHEN Yu-long, LIU Wen-lian, . Evolution characteristics of strain field and infrared radiation temperature field during deformation and rupture process of fractured sandstone [J]. Rock and Soil Mechanics, 2020, 41(S1): 95-105.
[2] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[3] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[4] HAN Chao, PANG De-peng, LI De-jian. Analysis of energy evolution during the step loading and unloading creep experiments of sandstone [J]. Rock and Soil Mechanics, 2020, 41(4): 1179-1188.
[5] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[6] LI Bin, HUANG Da, MA Wen-zhu, . Study on the influence of bedding plane on fracturing behavior of sandstone [J]. Rock and Soil Mechanics, 2020, 41(3): 858-868.
[7] ZHANG Zong-tang, GAO Wen-hua, ZHANG Zhi-min, TANG Xiao-yu, WU Jun, . Evolution of particle disintegration of red sandstone using Weibull distribution [J]. Rock and Soil Mechanics, 2020, 41(3): 877-885.
[8] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[9] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[10] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[11] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[12] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
[13] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[14] XU Bao-tian, ZHANG Li-ping, YAN Xiao-ying, QIU De-jun, . Effect of void characteristics on deteriorating rules of sandstone due to water [J]. Rock and Soil Mechanics, 2019, 40(2): 561-569.
[15] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!