Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1179-1188.doi: 10.16285/j.rsm.2019.0872

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of energy evolution during the step loading and unloading creep experiments of sandstone

HAN Chao1, 2,PANG De-peng1, 2,LI De-jian1, 2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2019-05-15 Revised:2019-07-03 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41572334, 11572344), the National Key R&D Program of China (2016YFC0600901) and the Fundamental Research Funds for the Central Universities (2010YL14).

Abstract: The uniaxial step loading and unloading creep experiments were conducted on the sandstone samples from Shaanxi Province to analyse the law of energy evolution of the samples during the process of deformation and failure. The results show that with the increase of cyclic series, the dissipation energy of each grade exhibits a nonlinear increase and the plastic strain energy of each grade is relatively stable. The dissipation energy exceeding plastic strain energy can be regarded as a precursor energy characteristic of the sample failure. By defining the correlation coefficient and establishing the relationship between energy and deformation, it can be found that with increasing cyclic series, there is a positive correlation between the plastic strain energy and the new adding plastic strain of each grade, and the dissipation energy of each grade is positively correlated with the plastic strain accumulation. According to the calculation of the energy of loading, creep, unloading and recovery stages, the evolution rate of energy in each grade increases with the increase of cyclic series. When the rates of loading and unloading are constant, the change rate of energy at the loading stage is larger than that at the unloading stage, and the change rate of energy at the creep stage is greater than that at the recovery stage under the same grade. Finally, by analysing the change law of energy at each cyclic loading stage, an energy attenuation coefficient is proposed, which decreases as a power function with increasing stress level. Thus, an effective method is introduced for predicting failure stress.

Key words: creep, sandstone, energy evolution, plastic strain energy, dissipation energy

CLC Number: 

  • TU 45
[1] LI Fu-lin, YANG Jian, LIU Wei-qun, FAN Zhen-hua, YANG Yu-gui, . Effect of loading rate changing on the mechanical properties of mudstone under uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(2): 369-378.
[2] SUN Wen-jin, JIN Ai-bing, WANG Shu-liang, ZHAO Yi-qing, WEI Li-chang, JIA Yu-chun, . Study on sandstone split mechanical properties under high temperature based on the DIC technology [J]. Rock and Soil Mechanics, 2021, 42(2): 511-518.
[3] LU Feng, QIU Wen-ge, . A multiparameter non-proportional shear strength reduction method for slope stability analysis based on energy evolution theory [J]. Rock and Soil Mechanics, 2021, 42(2): 547-557.
[4] ZHANG Ke, LI Na, CHEN Yu-long, LIU Wen-lian, . Evolution characteristics of strain field and infrared radiation temperature field during deformation and rupture process of fractured sandstone [J]. Rock and Soil Mechanics, 2020, 41(S1): 95-105.
[5] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[6] LI Lie-lie, GUAN Jun-feng, XIAO Ming-li, LIU Hai-chao, TANG Ke-dong, . A creep constitutive model for transversely isotropic rocks [J]. Rock and Soil Mechanics, 2020, 41(9): 2922-2930.
[7] XU Xiao-dong, SUN Guang-hua, YAO Xu-long, LIANG Xue-jian, SHAO Lu-hang, . A cusp catastrophe warning model for instability of backfill based on energy dissipation and release [J]. Rock and Soil Mechanics, 2020, 41(9): 3003-3012.
[8] LIU Jia-shun, JING Hong-wen, MENG Bo, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, . Research on the effect of moisture content on the creep behavior of weakly cemented soft rock and its fractional-order model [J]. Rock and Soil Mechanics, 2020, 41(8): 2609-2618.
[9] WEI Yao, YANG Geng-she, SHEN Yan-jun, MING Feng, LIANG Bo, . Creep test and constitutive model of cretaceous saturated frozen sandstone [J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646.
[10] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[11] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[12] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[13] CHEN Qiong, CUI De-shan, WANG Jing-e, LIU Qing-bing. An experimental study of creep characteristics of sliding zone soil of Huangtupo landslide under different consolidation stresses [J]. Rock and Soil Mechanics, 2020, 41(5): 1635-1642.
[14] XU Yi-qing, DENG Shao-yu, GE Qi. Prediction models for short-term and long-term pre-stress loss of anchor cable [J]. Rock and Soil Mechanics, 2020, 41(5): 1663-1669.
[15] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[5] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[6] YOU Hong-bing, ZHAO Feng-xin, LI Fang-jie. Scattering of P waves by a local nonhomogeneous body in a layered half-space[J]. , 2009, 30(10): 3133 -3138 .
[7] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[8] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[9] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[10] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .