Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2636-2646.doi: 10.16285/j.rsm.2019.1794

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Creep test and constitutive model of cretaceous saturated frozen sandstone

WEI Yao1, YANG Geng-she1, SHEN Yan-jun1, MING Feng2, LIANG Bo1   

  1. 1. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-09-16 Revised:2020-03-04 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51774231,41702339)and the Open Project of State Key Laboratory of Frozen Soil Engineering (SKLFSE201713).

Abstract: The freezing method is an important construction method for crossing water-rich soft rock formations. The long-term stability of the frozen wall plays an important role in engineering safety. Creep damage is one of the remarkable features of induced deformation of frozen walls. It is of great theoretical and engineering significance to study the characteristics of frozen rock creep. Taking the cretaceous saturated frozen sandstone as the research object, triaxial creep mechanical tests with different confining pressures (0, 2, 4 and 6 MPa) were carried out under the low temperature freezing condition of –10℃. The creep deformation of saturated frozen sandstone was analyzed. According to the existing viscoelastic-plastic model, the parameter identification was carried out and the variation law of creep parameters was studied. A creep constitutive model considering temperature and damage effect was then proposed. The results show that the low temperature freezing weakens the mutual cementation force between the particles during the creep process, and the creep characteristics are obvious. However, the confining pressure inhibits the development of the internal damage of the saturated frozen sandstone to some extent, resulting in the steady creep rate. The increase in confining pressure shows a significant downward trend. With the increase of confining pressure, the creep failure morphology of saturated frozen sandstone shows a change process from shear failure to tensile failure to local shape hardening failure. On the basis of the viscoelastic model, the creep parameters , and are increased first and then decreased with the increase of the load, and the inflection point is the yield stress. The parameter appears after the yield stress and undergoes increase to decrease. Combined with the frozen rock creep data, the parameters of the stress and low temperature coupled creep constitutive model are identified, and the numerical results of the model are compared with the creep experimental data to verify the correctness and rationality of the established nonlinear model.

Key words: cretaceous frozen sandstone, creep, nonlinear, parameter identification

CLC Number: 

  • TU 45
[1] LI Fu-lin, YANG Jian, LIU Wei-qun, FAN Zhen-hua, YANG Yu-gui, . Effect of loading rate changing on the mechanical properties of mudstone under uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(2): 369-378.
[2] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[3] LI Lie-lie, GUAN Jun-feng, XIAO Ming-li, LIU Hai-chao, TANG Ke-dong, . A creep constitutive model for transversely isotropic rocks [J]. Rock and Soil Mechanics, 2020, 41(9): 2922-2930.
[4] HUANG Zhi-gang, ZUO Qing-jun, WU Li, CHEN Fu-bang, HU Sheng-song, ZHU Sheng, . Nonlinear softening mechanism of argillaceous slate under water-rock interaction [J]. Rock and Soil Mechanics, 2020, 41(9): 2931-2942.
[5] CHEN Guo-xing, LI Lei, DING Jie-fa, ZHAO Kai, . Nonlinear seismic response characteristics of extremely deep deposit site with volcanic hard rock interlayers [J]. Rock and Soil Mechanics, 2020, 41(9): 3056-3065.
[6] HU An-feng, ZHOU Yu-shan, CHEN Yuan, XIA Chang-qing, XIE Kang-he, . Semi-analytical solutions for one-dimensional nonlinear large strain consolidation of structured soft clay [J]. Rock and Soil Mechanics, 2020, 41(8): 2583-2591.
[7] LIU Jia-shun, JING Hong-wen, MENG Bo, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, . Research on the effect of moisture content on the creep behavior of weakly cemented soft rock and its fractional-order model [J]. Rock and Soil Mechanics, 2020, 41(8): 2609-2618.
[8] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[9] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[10] YU Zhao-sheng, CHEN Xiao-bin, ZHANG Jia-sheng, DONG Liang, ABDOULKADER M S. Analysis of the nonlinearity of coefficient of earth pressure at rest and its calculation method for coarse-grained soils [J]. Rock and Soil Mechanics, 2020, 41(6): 1923-1932.
[11] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
[12] CHEN Qiong, CUI De-shan, WANG Jing-e, LIU Qing-bing. An experimental study of creep characteristics of sliding zone soil of Huangtupo landslide under different consolidation stresses [J]. Rock and Soil Mechanics, 2020, 41(5): 1635-1642.
[13] XU Yi-qing, DENG Shao-yu, GE Qi. Prediction models for short-term and long-term pre-stress loss of anchor cable [J]. Rock and Soil Mechanics, 2020, 41(5): 1663-1669.
[14] HAN Chao, PANG De-peng, LI De-jian. Analysis of energy evolution during the step loading and unloading creep experiments of sandstone [J]. Rock and Soil Mechanics, 2020, 41(4): 1179-1188.
[15] WANG Qing-yuan, LIU Jie, WANG Pei-tao, LIU Fei, . 冲击扰动诱发蠕变岩石加速失稳破坏试验 [J]. Rock and Soil Mechanics, 2020, 41(3): 781-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[3] HU Wei, HUANG Yi, LIU Zeng-rong. Testing and theoretical study of undrained shearing strength of saturated loess under cyclic loading[J]. , 2009, 30(10): 2996 -3000 .
[4] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .
[5] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[6] WANG Fei,WANG Yuan,NI Xiao-dong. Analysis of random characteristics of seepage field by stochastic finite element method[J]. , 2009, 30(11): 3539 -3542 .
[7] CHEN Feng, YANG Hai-jun, YANG Chun-he. Analysis of residual brine of salt rock gas storage during injecting gas to eject brine[J]. , 2009, 30(12): 3602 -3606 .
[8] YU Li, WANG Ming-nian, FANG Dun-min, CHEN Wei-tao. Study of quantification theory of rocky surrounding rock sub-classification during construction[J]. , 2009, 30(12): 3846 -3850 .
[9] LAN Si-qing, WANG Yu-lin, XIE Kang-he. Mathematical model and analytical solutions of soft soil consolidation with both way drainages in radial directions[J]. , 2009, 30(12): 3871 -3875 .
[10] HU Xiao-jun,TAN Xiao-hui. Foundation counter force loading method for calculating internal forces of a whole elastic anti-sliding pile[J]. , 2010, 31(1): 299 -303 .