Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (2): 369-378.doi: 10.16285/j.rsm.2020.0846

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of loading rate changing on the mechanical properties of mudstone under uniaxial compression

LI Fu-lin1, 2, YANG Jian2, LIU Wei-qun1, 2, FAN Zhen-hua2, YANG Yu-gui1   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2020-06-19 Revised:2020-12-10 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2015CB251602), the National Natural Science Foundation of China (51308533) and the Fundamental Research Funds for the Central Universities (2019ZDPY18).

Abstract: To study the effect of the loading rate change on the deformation and strength properties and creep behavior of mudstone, a series of uniaxial compression tests and graded loading creep tests was conducted on mudstone specimens at four loading rates (0.005, 0.05, 0.5, and 3 mm/min). The test results find that the mudstone exhibits an obvious loading rate change effect, which is represented by an isotach viscosity behavior. When loading at a constant rate, different stress-strain relationships are observed and corresponded to different constant loading rates. When loading at variable rates, as the loading rate changes, the stress-strain relationships also change. In addition, the loading rate of mudstone prior to creep has a large impact on the creep deformation and creep rate. As the loading rate of mudstone increases before creep, the amount of creep deformation and creep rate show a gradually increasing trend. The mudstone creep rate shows a gradual decay trend over time, and the decay process can be divided into three phases: linear decay, logarithmic decay and stable decay. Furthermore, based on the three-component model and loading rate variation effect, an elasto- viscoplastic constitutive model was established. The developed constitutive model was used for the numerical modeling of mudstone laboratory tests. Compared the modeling results to the laboratory test results, it is found that the elasto-viscoplastic constitutive model can properly simulate the loading rate change effects on the mechanical properties of mudstone under uniaxial compression conditions.

Key words: mudstone, loading rate, creep, graded loading, viscous property

CLC Number: 

  • TU 452
[1] LIU Xiao-yan, ZHANG Chuan-qing, SHI Tie-yong, ZHOU hui, HU Da-wei, ZHU Guo-jin, ZHU Yong, WANG Chao, . Experimental study of axis displacement mode of deep buried tunnel across active faults [J]. Rock and Soil Mechanics, 2021, 42(5): 1304-1312.
[2] ZHU Sheng, ZHANG Yuan, JIALIBIEKE Ahalibieke, YU Jian-qing, HE Zhao-sheng, . Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis [J]. Rock and Soil Mechanics, 2021, 42(5): 1453-1461.
[3] YANG Ai-wu, YANG Shao-kun, ZHANG Zhen-dong, . Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths [J]. Rock and Soil Mechanics, 2020, 41(9): 2891-2900.
[4] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[5] LI Lie-lie, GUAN Jun-feng, XIAO Ming-li, LIU Hai-chao, TANG Ke-dong, . A creep constitutive model for transversely isotropic rocks [J]. Rock and Soil Mechanics, 2020, 41(9): 2922-2930.
[6] XUE Yan-jin, WANG Qi-cai, MA Li-na, ZHANG Rong-ling, DAI Jin-peng, WANG Qiang, . Expansibility classification of mudstone for high-speed railway ballastless track foundation [J]. Rock and Soil Mechanics, 2020, 41(9): 3109-3118.
[7] LIU Jia-shun, JING Hong-wen, MENG Bo, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, . Research on the effect of moisture content on the creep behavior of weakly cemented soft rock and its fractional-order model [J]. Rock and Soil Mechanics, 2020, 41(8): 2609-2618.
[8] WEI Yao, YANG Geng-she, SHEN Yan-jun, MING Feng, LIANG Bo, . Creep test and constitutive model of cretaceous saturated frozen sandstone [J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646.
[9] LI Kun-peng, ZHAO Xiao-yan, XIAO Dian, LI Jin. Mechanism of silty mudstone slaking aggravated by acid rain-induced chemical damage [J]. Rock and Soil Mechanics, 2020, 41(8): 2693-2702.
[10] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[11] CHEN Qiong, CUI De-shan, WANG Jing-e, LIU Qing-bing. An experimental study of creep characteristics of sliding zone soil of Huangtupo landslide under different consolidation stresses [J]. Rock and Soil Mechanics, 2020, 41(5): 1635-1642.
[12] XU Yi-qing, DENG Shao-yu, GE Qi. Prediction models for short-term and long-term pre-stress loss of anchor cable [J]. Rock and Soil Mechanics, 2020, 41(5): 1663-1669.
[13] ZHANG Mao-chu, SHENG Qian, CUI Zhen, MA Ya-li-na, ZHOU Guang-xin. Effect of loading rate on tensile strength of rock materials and morphology of fracture joint surface [J]. Rock and Soil Mechanics, 2020, 41(4): 1169-1178.
[14] HAN Chao, PANG De-peng, LI De-jian. Analysis of energy evolution during the step loading and unloading creep experiments of sandstone [J]. Rock and Soil Mechanics, 2020, 41(4): 1179-1188.
[15] WANG Qing-yuan, LIU Jie, WANG Pei-tao, LIU Fei, . 冲击扰动诱发蠕变岩石加速失稳破坏试验 [J]. Rock and Soil Mechanics, 2020, 41(3): 781-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] RONG Guan, WANG Si-jing, WANG En-zhi, LIU Sun-gui. Study of evolutional simulation of Baihetan river valley and evaluation of engineering quality of jointed basalt P2β3[J]. , 2009, 30(10): 3013 -3019 .
[4] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[5] ZHAO Ming-hua, LIU Xiao-ping, HUANG Li-kui. Study of characteristics of seepage of roadbed’s fissures[J]. , 2009, 30(10): 3122 -3126 .
[6] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[7] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .
[8] ZHU Zhen-de,LI Dao-wei,JIANG Zhi-jian,LIU Jin-hui,YANG Yong-jie. Quantitative description of deep tunnel surrounding rocks’ mesostructure under circulating action of temperature[J]. , 2009, 30(11): 3237 -3241 .
[9] ZHANG Kai,ZHOU Hui,FENG Xia-ting,FANG Jing-nian,ZHANG Yuan-gang. Discussion on forms of continuum equation for Biot’s consolidation[J]. , 2009, 30(11): 3273 -3277 .
[10] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .