›› 2007, Vol. 28 ›› Issue (6): 1129-1132.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Durability of stabilized coastal saline soils: water stability and freeze-thaw resistance

ZHOU Qi1,DENG An1,HAN Wen-feng2,CHAI Shou-xi2,WANG Pei2   

  1. 1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 2. Tianjin Institute of Urban Construction, Tianjin 300384, China
  • Received:2005-07-05 Online:2007-06-11 Published:2013-09-13

Abstract: In coastal areas, the durability of stabilized saline soils as roadbed fillings directly influences the performance of roadbed because of the negative properties of saline soils. Accordingly, water stability and freeze-thaw resistance of stabilized saline soils are studied. The results of the tests indicate that the coastal saline soils stabilized by lime, cement and SH present good water stability and freeze-thaw resistance, so as to meet the requirements of highway construction in coastal areas.

Key words: coastal saline soil, stabilized saline soil, new polymeric solidified material, durability, water stability, freeze-thaw resistance

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HONG Bao-ning, HUA Jun-hui, LIU Xin, YI Jin-xiang, . Research on quality control method with two indices for embankment filled with high liquid limit soil [J]. , 2016, 37(S1): 255-262.
[2] YANG Kang-hui, OU Zhong-wen, XIAO Han-bing, MO Jin-chuan, LIU Jin-ming. Mechanism analysis and effect of cementitious capillary crystalline waterproofing materials on sulfur aluminate cement solidified soil [J]. , 2016, 37(2): 477-486.
[3] YU Bo-wei, DU Yan-jun, LIU Chen-yang, BO Yu-lin. Study of durability of reactive magnesia-activated ground granulated blast-furnace slag stabilized soil attacked by sulfate sodium solution [J]. , 2015, 36(S2): 64-72.
[4] LIU Kai , LI Ren-min , DU Yan-jun , WEI Min-li , . A durability experimental study of lightweight soil subjected to wetting-drying cycles and sodium sulfate soaking [J]. , 2015, 36(S1): 362-366.
[5] XIAO Han-bing,OU Zhong-wen,LIU Jin-ming,MO Jin-chuan,YANG Kang-hui. Effects of potassium salt and phosphate on the early strength of stabilized soil [J]. , 2015, 36(6): 1643-1648.
[6] PENG Peng ,SHAN Zhi-gang ,WANG Yong-ming ,JIA Hai-bo ,DONG Yu-fan . Anti-seepage effect of curtain under dam foundation and its durability based on saturation index model [J]. , 2013, 34(1): 221-226.
[7] WANG Dong-xing , XU Wei-ya . Research on strength and durability of sediments solidified with high volume fly ash [J]. , 2012, 33(12): 3659-3664.
[8] YAN Geng-sheng, ZHANG Hu-yuan, WANG Xiao-dong, YANG Bo, LI Min. Durability of earthen architecture ruins under cyclic freezing and thawing [J]. , 2011, 32(8): 2267-2273.
[9] ZHANG Hu-yuan, YAN Geng-sheng, ZHAO Tian-yu, WANG Xiao-dong, ZHANG Yong-xia. Durability of earthen architecture ruins under cyclic wetting and drying [J]. , 2011, 32(2): 347-355.
[10] PENG Peng,SONG Han-zhou,XU Jian-guang,GUO Zhang-jun. Anti-seepage evaluation of dam foundation curtain based on Bayes data fusion theory [J]. , 2010, 31(9): 2889-2893.
[11] PENG Peng, SONG Han-zhou, GUO Zhang-jun. Study of macroscopic regime of groundwater under dam section based on data fusion theory [J]. , 2009, 30(12): 3820-3824.
[12] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge [J]. , 2009, 30(10): 3001-3004.
[13] GUAN Xi-cai. On application of new ESC solidifying agent to mixing piles [J]. , 2008, 29(11): 3149-3152.
[14] FENG Mei-guo, CHEN Shan-xiong, YU Song, MA Jia. Laboratory study on water stability of flyash-treated expansive soil [J]. , 2007, 28(9): 1889-1893.
[15] ZHANG Da-jie , TIAN Xiao-feng , HOU Hao-bo , LIU Hao , TAN Shi-kang . Mechanical behavior and mechanism of stabilizing soft soil by slag cementitious material [J]. , 2007, 28(9): 1987-1991.
Full text



[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] ZHANG Chun-hui, YU Yong-jiang, ZHAO Quan-sheng. Seepage-stress elastoplastic coupling model of heterogeneous coal and numerical simulation[J]. , 2009, 30(9): 2837 -2842 .
[4] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[5] WEI Gang,GUO Zhi-we,WEI Xin-jiang,CHEN Wei-jun. Analysis of coupled seepage and stress of shield tunnel launching accident in soft clay[J]. , 2010, 31(S1): 383 -387 .
[6] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[7] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[8] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[9] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[10] HOU Gong-yu,NIU Xiao-song. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. , 2009, 30(6): 1555 -1562 .