›› 2013, Vol. 34 ›› Issue (S1): 60-66.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Critical slip field of slope in process of rainfall infiltration

SHEN Yin-bin1, 2,ZHU Da-yong1, 2,JIANG Ze-feng1, 2,YAO Ha-yan1, 2   

  1. 1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009,.China; 2. Anhui Provincial Key Laboratory of Civil Engineering and Materials, Hefei 230009, China
  • Received:2012-11-11 Online:2013-08-30 Published:2014-06-09

Abstract: The rising of pore water pressure and decreasing of matric suction in the process of rainfall infiltration into slope is the main factor of slope failures .Numerical simulation method of critical slip field of slope considering rainfall process is proposed based on proposed unsaturated soil shear strength theory and water pressure field obtained by finite element analysis of saturated-unsaturated seepage. Thus, slope local safety factor and slope whole safety factor as well as the corresponding critical slip surfaces during infiltration are calculated conveniently and rapidly. This method has been applied to the stability analysis of two example slopes and the effect study of rainfall intensity, duration and strength parameter on slope stability. The results show that the critical slip field method could search for any shape of the most dangerous slip surface; and the safety factor is reasonable.

Key words: critical slip field, slope stability, rainfall infiltration, saturated-unsaturated seepage flow, finite elements

CLC Number: 

  • TB 115
[1] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[2] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[3] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[4] ZHAN Liang-tong, HU Ying-tao, LIU Xiao-chuan, CHEN Jie, WANG Han-lin, ZHU Bin, CHEN Yun-min. Centrifuge modelling of rainfall infiltration in an unsaturated loess and joint monitoring of multi-physical parameters [J]. Rock and Soil Mechanics, 2019, 40(7): 2478-2486.
[5] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[6] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[7] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[8] LIU Qing-bin, PAN Mao, LIU Jie, GUO Yan-jun, ZHANG Xiao-shuang, YAO Jian-peng, LI Fang-yu, . Paraview visualization and virtual reality of output of finite element analysis in Abaqus [J]. Rock and Soil Mechanics, 2019, 40(12): 4916-4924.
[9] XIAHOU Yun-shan, ZHANG Shu, TANG Hui-ming, LIU Xiao, WU Qiong, . Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters [J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945.
[10] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[11] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[12] WANG Zhong-jin, FANG Peng-fei, XIE Xin-yu, WANG Kui-hua, WANG Wen-jun, LI Jin-zhu, . Analysis of effected factors for vertical compressive bearing capacity of ribbed bamboo joint pile [J]. Rock and Soil Mechanics, 2018, 39(S2): 381-388.
[13] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
[14] DAI Zhong-hai, HU Zai-qiang, YIN Xiao-tao, WU Zhen-jun,. Deformation stability analysis of gentle reverse inclined layer-like rock slope under engineering load [J]. , 2018, 39(S1): 412-418.
[15] ZHENG An-xing, LUO Xian-qi,. An extended finite element method for modeling hydraulic fracturing in perilous rock [J]. , 2018, 39(9): 3461-3468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .